• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

SBS: 基于固态盘内部并行性的R-树高效查询算法

陈玉标, 李建中, 李英姝

陈玉标, 李建中, 李英姝. SBS: 基于固态盘内部并行性的R-树高效查询算法[J]. 计算机研究与发展, 2020, 57(11): 2404-2418. DOI: 10.7544/issn1000-1239.2020.20190564
引用本文: 陈玉标, 李建中, 李英姝. SBS: 基于固态盘内部并行性的R-树高效查询算法[J]. 计算机研究与发展, 2020, 57(11): 2404-2418. DOI: 10.7544/issn1000-1239.2020.20190564
Chen Yubiao, Li Jianzhong, Li Yingshu. SBS: An Efficient R-Tree Query Algorithm Exploiting the Internal Parallelism of SSDs[J]. Journal of Computer Research and Development, 2020, 57(11): 2404-2418. DOI: 10.7544/issn1000-1239.2020.20190564
Citation: Chen Yubiao, Li Jianzhong, Li Yingshu. SBS: An Efficient R-Tree Query Algorithm Exploiting the Internal Parallelism of SSDs[J]. Journal of Computer Research and Development, 2020, 57(11): 2404-2418. DOI: 10.7544/issn1000-1239.2020.20190564
陈玉标, 李建中, 李英姝. SBS: 基于固态盘内部并行性的R-树高效查询算法[J]. 计算机研究与发展, 2020, 57(11): 2404-2418. CSTR: 32373.14.issn1000-1239.2020.20190564
引用本文: 陈玉标, 李建中, 李英姝. SBS: 基于固态盘内部并行性的R-树高效查询算法[J]. 计算机研究与发展, 2020, 57(11): 2404-2418. CSTR: 32373.14.issn1000-1239.2020.20190564
Chen Yubiao, Li Jianzhong, Li Yingshu. SBS: An Efficient R-Tree Query Algorithm Exploiting the Internal Parallelism of SSDs[J]. Journal of Computer Research and Development, 2020, 57(11): 2404-2418. CSTR: 32373.14.issn1000-1239.2020.20190564
Citation: Chen Yubiao, Li Jianzhong, Li Yingshu. SBS: An Efficient R-Tree Query Algorithm Exploiting the Internal Parallelism of SSDs[J]. Journal of Computer Research and Development, 2020, 57(11): 2404-2418. CSTR: 32373.14.issn1000-1239.2020.20190564

SBS: 基于固态盘内部并行性的R-树高效查询算法

基金项目: 国家自然科学基金项目(U1811461,61832003,61732003);美国国家科学基金项目(1741277,1829674)
详细信息
  • 中图分类号: TP311

SBS: An Efficient R-Tree Query Algorithm Exploiting the Internal Parallelism of SSDs

Funds: This work was supported by the National Natural Science Foundation of China (U1811461, 61832003, 61732003) and the National Science Foundation of USA (1741277, 1829674).
  • 摘要: 由于闪存固态盘逐渐取代机械硬盘成为主流存储,与此同时,随着闪存固态盘技术的进步,越来越多的存储芯片和硬件资源被植入,使得它拥有丰富的内部并行性,而传统的外存算法和数据结构优化工作往往没有考虑固态盘的内部并行性. 范围查询作为R-树索引的基础操作,它的性能对于地理信息系统非常重要. 但是由于R-树索引父子结点之间加载的依赖问题,使得它很难能够有效地去利用固态盘内部并行性去加速. 因此,为了克服该困难,提出一种基于栈结构的范围查询算法SBS(stack batch search). 它能在有效地利用固态盘内部并行性的同时,最多只需要O(B log N)内存空间. 最后,通过真实数据实验来验证SBS算法的性能. 实验结果表明,SBS在可接受的内存消耗情况下,在2款不同的固态盘上,范围查询的性能加速比可达3.4和4.5.
    Abstract: The flash-based SSD has become the mainstream storage device for its excellent features. At the same time, with the magnificent improvement of internal design of SSD architecture, more and more storage chips and hardware resources are integrated into SSDs which makes them full of internal parallelism, while traditional external memory algorithm and data structure optimization rarely take the internal parallelism of SSDs into consideration. Range query is one of the most important basic operations of R-tree. R-tree is the engine index data structure of many geographic information systems. Therefore, the efficiency of range query plays an important role in the performance of the entire geographic information system. Almost all the tree index structures are difficult to effectively utilize the feature of internal parallelism due to the data loading dependency problem. Therefore, a new range query algorithm SBS(stack batch search) based on stack is proposed, which can effectively utilize the internal parallelism of the SSD with memory usage of O(B log N). Finally, we verify the performance of the SBS algorithm through real data experiments. Experimental results show that SBS has the best performance in range query under acceptable memory consumption. On two different solid-state drives, the speed up ratio of SBS can reach 3.4 and 4.5 separately.
  • 期刊类型引用(6)

    1. 徐嘉振,何文雪,李浩然. 基于注意力时间卷积的运动想象脑电分类方法. 现代电子技术. 2024(18): 70-76 . 百度学术
    2. 仝航,杨燕,江永全. 检测脑电癫痫的多头自注意力机制神经网络. 计算机科学与探索. 2023(02): 442-452 . 百度学术
    3. 王昊 ,周建涛 ,郝昕毓 ,王飞宇 . 基于特征再抽象(FRA)的多元时序预测方法. 计算机科学. 2023(S2): 662-669 . 百度学术
    4. 蔡霄仙,陈顺芝,王江辉,丁洋,费克玲. 基于多时窗共空间模式的HMM运动想象脑电识别. 计算机测量与控制. 2023(12): 277-283 . 百度学术
    5. 许萌,王丹,李致远,陈远方. IncepA-EEGNet:融合Inception网络和注意力机制的P300信号检测方法. 浙江大学学报(工学版). 2022(04): 745-753+782 . 百度学术
    6. 张远鹏,蔡可夫,姚敏,姚登福,王理. 基于深度堆叠式稀疏回归的癫痫患者脑电信号特征选择. 南通大学学报(医学版). 2021(03): 212-216 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 21
出版历程
  • 发布日期:  2020-10-31

目录

    /

    返回文章
    返回