• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

一种度修正的属性网络随机块模型

郑忆美, 贾彩燕, 常振海, 李轩涯

郑忆美, 贾彩燕, 常振海, 李轩涯. 一种度修正的属性网络随机块模型[J]. 计算机研究与发展, 2020, 57(8): 1650-1662. DOI: 10.7544/issn1000-1239.2020.20200158
引用本文: 郑忆美, 贾彩燕, 常振海, 李轩涯. 一种度修正的属性网络随机块模型[J]. 计算机研究与发展, 2020, 57(8): 1650-1662. DOI: 10.7544/issn1000-1239.2020.20200158
Zheng Yimei, Jia Caiyan, Chang Zhenhai, Li Xuanya. A Degree Corrected Stochastic Block Model for Attributed Networks[J]. Journal of Computer Research and Development, 2020, 57(8): 1650-1662. DOI: 10.7544/issn1000-1239.2020.20200158
Citation: Zheng Yimei, Jia Caiyan, Chang Zhenhai, Li Xuanya. A Degree Corrected Stochastic Block Model for Attributed Networks[J]. Journal of Computer Research and Development, 2020, 57(8): 1650-1662. DOI: 10.7544/issn1000-1239.2020.20200158
郑忆美, 贾彩燕, 常振海, 李轩涯. 一种度修正的属性网络随机块模型[J]. 计算机研究与发展, 2020, 57(8): 1650-1662. CSTR: 32373.14.issn1000-1239.2020.20200158
引用本文: 郑忆美, 贾彩燕, 常振海, 李轩涯. 一种度修正的属性网络随机块模型[J]. 计算机研究与发展, 2020, 57(8): 1650-1662. CSTR: 32373.14.issn1000-1239.2020.20200158
Zheng Yimei, Jia Caiyan, Chang Zhenhai, Li Xuanya. A Degree Corrected Stochastic Block Model for Attributed Networks[J]. Journal of Computer Research and Development, 2020, 57(8): 1650-1662. CSTR: 32373.14.issn1000-1239.2020.20200158
Citation: Zheng Yimei, Jia Caiyan, Chang Zhenhai, Li Xuanya. A Degree Corrected Stochastic Block Model for Attributed Networks[J]. Journal of Computer Research and Development, 2020, 57(8): 1650-1662. CSTR: 32373.14.issn1000-1239.2020.20200158

一种度修正的属性网络随机块模型

基金项目: 国家自然科学基金项目(61876016,61632004);中央高校基本科研业务费专项资金项目(2019JBZ110);百度松果计划开放研究基金项目
详细信息
  • 中图分类号: TP301

A Degree Corrected Stochastic Block Model for Attributed Networks

Funds: This work was supported by the National Natural Science Foundation of China (61876016, 61632004), the Fundamental Research Funds for the Central Universities (2019JBZ110), and the Baidu Pinecone Program.
  • 摘要: 社区检测是复杂网络分析中的重要任务,现有的社区检测方法多侧重于利用单纯的网络结构,而融合节点属性的方法也主要针对传统的社区结构,不能检测网络中的二部图结构、混合结构等情况.此外,网络中每个节点的度会影响网络中链接的构成,同样会影响社区结构的分布.因此,提出一种基于随机块模型的属性网络社区检测方法DPSB_PG.不同于其他属性网络中的生成式模型,该方法中节点链接和节点属性的产生均服从泊松分布,并基于随机块模型考虑社区间相连接的概率,重点在节点链接的生成过程中融合度修正的思想,最后利用期望最大化EM算法推断模型中的参数,得到网络中节点的社区隶属度.真实网络上的实验结果显示:模型继承了随机块模型的优点,能够检测网络中的广义社区结构,且由于度修正的引入,具有很好的数据拟合能力,因此在属性网络与非属性网络社区检测性能上优于其他现有相关算法.
    Abstract: Community detection is an important task in complex network analysis. The existing community detection methods mostly focus on utilizing the simple network structure, while the methods of integrating network topology and node attributes are also mainly aimed at the traditional community structure, which fails to detect the bipartite structure, mixed structure, etc. However, the degree of each node in the network will affect the composition of the links in the network, as well as the distribution of the community structure. This paper proposes a method called DPSB_PG for attributed networks community detection based on the stochastic block model. Unlike other generative models for attributed networks, in this method, the generation of node links and node attributes both followes the Poisson distribution, and considers the probability between communities based on the stochastic block model. Moreover, the idea of degree corrected is integrated in the process of generating node links. Finally, in order to obtain the community membership of nodes, the expectation-maximization algorithm is used to infer the parameters of the model. The experimental results on the real networks show that the DPSB_PG inherits the advantages of the stochastic block model and can detect the general community structure in networks. Since the introduction of the idea of degree corrected, this model has a good data fitting ability. Overall, the performance of this model is superior to other existing state-of-the-art community detection algorithms for both attributed networks and non-attributed networks.
  • 期刊类型引用(9)

    1. 李杰,曹建军,王保卫,庄园. 基于图常量条件函数依赖的图修复规则发现. 计算机技术与发展. 2024(04): 7-15 . 百度学术
    2. 甘润东,王策,李洵. 基于迁移学习的网络传输异构数据一致性校验系统. 自动化技术与应用. 2023(01): 82-85+92 . 百度学术
    3. 许明宇,王宜怀. 异构物联网中关联数据一致性规则挖掘模型. 计算机仿真. 2023(02): 425-428+442 . 百度学术
    4. 董琴,杨涛. 基于RBF神经网络的关联数据一致性挖掘仿真. 计算机仿真. 2023(07): 457-461 . 百度学术
    5. 周春雷,董新微,季良,张璧君,许中平. 基于改进DTW算法的高维时空数据关联挖掘方法. 电子设计工程. 2023(24): 141-144+149 . 百度学术
    6. 沈毅波. RBF神经网络在关联数据一致性挖掘中的应用. 福建电脑. 2022(08): 5-9 . 百度学术
    7. 程瑞营,张攀,肖雨,乔宇杰,张安奕. 基于时序数据的云网协同平台人工智能运维体系. 电信科学. 2022(11): 24-35 . 百度学术
    8. 蒋添任,季于东,侯爱琴. 分布式异构科技资源池数据融合设计. 物联网技术. 2021(06): 62-64 . 百度学术
    9. 祝红艺,杜香莉,淮孟姣,王博雅. 智库服务中的数据源规范标引合作体系建设研究——以作者与机构名称为例. 当代图书馆. 2021(03): 12-15+35 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  1019
  • HTML全文浏览量:  0
  • PDF下载量:  327
  • 被引次数: 13
出版历程
  • 发布日期:  2020-07-31

目录

    /

    返回文章
    返回