• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于多尺度特征提取与挤压激励模型的运动想象分类方法

贾子钰, 林友芳, 刘天航, 杨凯昕, 张鑫旺, 王晶

贾子钰, 林友芳, 刘天航, 杨凯昕, 张鑫旺, 王晶. 基于多尺度特征提取与挤压激励模型的运动想象分类方法[J]. 计算机研究与发展, 2020, 57(12): 2481-2489. DOI: 10.7544/issn1000-1239.2020.20200723
引用本文: 贾子钰, 林友芳, 刘天航, 杨凯昕, 张鑫旺, 王晶. 基于多尺度特征提取与挤压激励模型的运动想象分类方法[J]. 计算机研究与发展, 2020, 57(12): 2481-2489. DOI: 10.7544/issn1000-1239.2020.20200723
Jia Ziyu, Lin Youfang, Liu Tianhang, Yang Kaixin, Zhang Xinwang, Wang Jing. Motor Imagery Classification Based on Multiscale Feature Extraction and Squeeze-Excitation Model[J]. Journal of Computer Research and Development, 2020, 57(12): 2481-2489. DOI: 10.7544/issn1000-1239.2020.20200723
Citation: Jia Ziyu, Lin Youfang, Liu Tianhang, Yang Kaixin, Zhang Xinwang, Wang Jing. Motor Imagery Classification Based on Multiscale Feature Extraction and Squeeze-Excitation Model[J]. Journal of Computer Research and Development, 2020, 57(12): 2481-2489. DOI: 10.7544/issn1000-1239.2020.20200723
贾子钰, 林友芳, 刘天航, 杨凯昕, 张鑫旺, 王晶. 基于多尺度特征提取与挤压激励模型的运动想象分类方法[J]. 计算机研究与发展, 2020, 57(12): 2481-2489. CSTR: 32373.14.issn1000-1239.2020.20200723
引用本文: 贾子钰, 林友芳, 刘天航, 杨凯昕, 张鑫旺, 王晶. 基于多尺度特征提取与挤压激励模型的运动想象分类方法[J]. 计算机研究与发展, 2020, 57(12): 2481-2489. CSTR: 32373.14.issn1000-1239.2020.20200723
Jia Ziyu, Lin Youfang, Liu Tianhang, Yang Kaixin, Zhang Xinwang, Wang Jing. Motor Imagery Classification Based on Multiscale Feature Extraction and Squeeze-Excitation Model[J]. Journal of Computer Research and Development, 2020, 57(12): 2481-2489. CSTR: 32373.14.issn1000-1239.2020.20200723
Citation: Jia Ziyu, Lin Youfang, Liu Tianhang, Yang Kaixin, Zhang Xinwang, Wang Jing. Motor Imagery Classification Based on Multiscale Feature Extraction and Squeeze-Excitation Model[J]. Journal of Computer Research and Development, 2020, 57(12): 2481-2489. CSTR: 32373.14.issn1000-1239.2020.20200723

基于多尺度特征提取与挤压激励模型的运动想象分类方法

基金项目: 中央高校基本科研业务费专项资金(2020YJS025);国家自然科学基金项目(61603029)
详细信息
  • 中图分类号: TP391

Motor Imagery Classification Based on Multiscale Feature Extraction and Squeeze-Excitation Model

Funds: This work was supported by the Fundamental Research Funds for the Central Universities (2020YJS025) and the National Natural Science Foundation of China (61603029).
  • 摘要: 基于运动想象的脑机接口技术能够建立大脑与外界之间的联系,逐渐成为人机混合增强智能的重要应用,并广泛应用于医学康复治疗等领域.由于脑电信号具有非线性、非平稳和低信噪比等特点,使得准确的分类运动想象脑电信号具有很大挑战.为此,提出一种新颖的多尺度特征提取与挤压激励模型对运动想象脑电信号进行高精度分类.首先,基于多尺度卷积模块自动提取原始脑电信号的时域、频域和时频域特征;然后,使用残差模块和挤压激励模块分别进行特征的融合和选择;最后,利用全连接网络层进行运动想象脑电信号的分类.实验在2个公开的脑机接口竞赛数据集上进行分析,结果表明该模型与现有先进模型相比,有效地提升了运动想象脑电信号的识别效果,在2个数据集上分别取得了78.0%和82.5%的平均准确度,该模型可以在脑电通道较少的情况下有效地分类脑电信号且无需手动设计特征,具有较高的应用价值.
    Abstract: Brain-computer Interface (BCI) technology based on motor imagery (MI) can establish communication between the human brain and outside world. It has been widely used in medical rehabilitation and other fields. Owing to the characteristics of the motor imagery EEG signals,such as non-linear, non-stationary, and low signal-noise ratio, it is a huge challenge to classify motor imagery EEG signals accurately. Hence, we propose a novel multiscale feature extraction and squeeze-excitation model which is applied for the classification of motor imagery EEG signals. Firstly, the proposed deep learning module, which is based on multiscale structure, automatically extracts time domain features, frequency domain features and time-frequency domain features. Then, the residual module and squeeze-excitation module are applied for feature fusion and selection, respectively. Finally, fully connected network layers are used to classify motor imagery EEG signals. The proposed model is evaluated on two public BCI competition datasets. The results show that the proposed model can effectively improve the recognition performance of motor imagery EEG signals compared with the existing several state-of-the-art models. The average accuracy on the two datasets is 78.0% and 82.5%, respectively. Moreover, the proposed model has higher application value because it classifies motor imagery EEG signals efficiently without manual feature extraction when spatial information is insufficient.
  • 期刊类型引用(6)

    1. 徐嘉振,何文雪,李浩然. 基于注意力时间卷积的运动想象脑电分类方法. 现代电子技术. 2024(18): 70-76 . 百度学术
    2. 仝航,杨燕,江永全. 检测脑电癫痫的多头自注意力机制神经网络. 计算机科学与探索. 2023(02): 442-452 . 百度学术
    3. 王昊 ,周建涛 ,郝昕毓 ,王飞宇 . 基于特征再抽象(FRA)的多元时序预测方法. 计算机科学. 2023(S2): 662-669 . 百度学术
    4. 蔡霄仙,陈顺芝,王江辉,丁洋,费克玲. 基于多时窗共空间模式的HMM运动想象脑电识别. 计算机测量与控制. 2023(12): 277-283 . 百度学术
    5. 许萌,王丹,李致远,陈远方. IncepA-EEGNet:融合Inception网络和注意力机制的P300信号检测方法. 浙江大学学报(工学版). 2022(04): 745-753+782 . 百度学术
    6. 张远鹏,蔡可夫,姚敏,姚登福,王理. 基于深度堆叠式稀疏回归的癫痫患者脑电信号特征选择. 南通大学学报(医学版). 2021(03): 212-216 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  1166
  • HTML全文浏览量:  4
  • PDF下载量:  937
  • 被引次数: 21
出版历程
  • 发布日期:  2020-11-30

目录

    /

    返回文章
    返回