Target Community Detection with User Interest Preferences and Influence
-
摘要: 目标社区检测旨在找到符合用户偏好的有凝聚力的社区.然而,所有现有工作要么在很大程度上忽视社区的外部影响,要么不是"基于目标的",即不适合目标请求.为了解决这一问题,提出面向属性网络的融合用户兴趣偏好与社区影响力的目标社区发现方法,挖掘与用户偏好相关且最具一定影响力的高质量社区.首先,综合节点结构与属性信息,挖掘包含样例节点的极大k-团作为潜在目标社区核心,并设计熵加权属性权重计算方法来捕获潜在目标社区属性子空间权重,挖掘用户偏好;其次,融合社区内部紧密性和外部可分离性定义社区质量函数,以极大k-团为核心扩展得到高质量的潜在目标社区;最后,定义社区的外部影响分数量化办法,并结合社区质量函数值及外部影响分数对所有潜在目标社区排序,输出综合质量较高的社区为目标社区.此外,在计算极大k-团的属性子空间权重时,设计了2重剪枝策略提升方法的性能和效率.在人工网络和真实网络数据集上的实验结果印证了所提方法的效率和有效性.Abstract: Target community detection is to find the cohesive communities consistent with user’s preference. However, all the existing works either largely ignore the outer influence of the communities, or not “target-based”, i.e., they are not suitable for a target request. To solve the above problems, in this paper, the target community detection with user interest preferences and influence (TCPI) is proposed to locate the most influential and high-quality community related to user’s preference. Firstly, the node structure and attribute information are synthesized, and maximum k-cliques containing sample nodes are investigated as the core of the potential target community, and an entropy weighted attribute weight calculation method is designed to capture the attribute subspace weight of the potential target community. Secondly, the internal compactness and the external separability of the community is defined as the community quality function and the high-quality potential target community is expanded with each of the maximum k-cliques as the core. Finally, the external impact score of the community is defined, and all potential target communities are ranked according to the quality function and the external impact score of the community, and the communities with higher comprehensive quality are decided as the target communities. In addition, a pruning strategy of two-level is designed to improve the performance and efficiency of the algorithm after calculating the attribute subspace weights of all maximal k-cliques. Experimental results on synthetic networks and real-world network datasets verify the efficiency and effectiveness of the proposed method.
-
-
期刊类型引用(5)
1. 闫彩瑞,马慧芳,李青青. 基于谱图小波的多尺度社区搜索方法. 计算机工程与科学. 2023(06): 1106-1115 . 百度学术
2. 张霄宏,郝浩宇,任杰成,王海涛. 加权模块度增量引导下的层次社区发现算法. 小型微型计算机系统. 2023(07): 1479-1485 . 百度学术
3. 刁雅静,吴嘉辉,卢健,王志英,朱庆康. 基于层次耦合聚类的用户社区划分方法:以主题公园社交平台为例. 江苏科技大学学报(自然科学版). 2023(04): 86-91 . 百度学术
4. 曹旭,殷铭,漆翔宇. 融合属性熵权和拓扑的局部社区发现算法. 西南民族大学学报(自然科学版). 2022(04): 448-453 . 百度学术
5. 李青青,马慧芳,李举,李志欣. 属性网络中相似性增强随机游走的多社区搜索. 电子学报. 2021(11): 2096-2100 . 百度学术
其他类型引用(12)
计量
- 文章访问数: 910
- HTML全文浏览量: 4
- PDF下载量: 578
- 被引次数: 17