• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于多标签的内核配置图及其应用

侯朋朋, 张珩, 武延军, 于佳耕, 邰阳, 苗玉霞

侯朋朋, 张珩, 武延军, 于佳耕, 邰阳, 苗玉霞. 基于多标签的内核配置图及其应用[J]. 计算机研究与发展, 2021, 58(3): 651-667. DOI: 10.7544/issn1000-1239.2021.20200186
引用本文: 侯朋朋, 张珩, 武延军, 于佳耕, 邰阳, 苗玉霞. 基于多标签的内核配置图及其应用[J]. 计算机研究与发展, 2021, 58(3): 651-667. DOI: 10.7544/issn1000-1239.2021.20200186
Hou Pengpeng, Zhang Heng, Wu Yanjun, Yu Jiageng, Tai Yang, Miao Yuxia. Kernel Configuration Infographic Based on Multi-Label and Its Application[J]. Journal of Computer Research and Development, 2021, 58(3): 651-667. DOI: 10.7544/issn1000-1239.2021.20200186
Citation: Hou Pengpeng, Zhang Heng, Wu Yanjun, Yu Jiageng, Tai Yang, Miao Yuxia. Kernel Configuration Infographic Based on Multi-Label and Its Application[J]. Journal of Computer Research and Development, 2021, 58(3): 651-667. DOI: 10.7544/issn1000-1239.2021.20200186
侯朋朋, 张珩, 武延军, 于佳耕, 邰阳, 苗玉霞. 基于多标签的内核配置图及其应用[J]. 计算机研究与发展, 2021, 58(3): 651-667. CSTR: 32373.14.issn1000-1239.2021.20200186
引用本文: 侯朋朋, 张珩, 武延军, 于佳耕, 邰阳, 苗玉霞. 基于多标签的内核配置图及其应用[J]. 计算机研究与发展, 2021, 58(3): 651-667. CSTR: 32373.14.issn1000-1239.2021.20200186
Hou Pengpeng, Zhang Heng, Wu Yanjun, Yu Jiageng, Tai Yang, Miao Yuxia. Kernel Configuration Infographic Based on Multi-Label and Its Application[J]. Journal of Computer Research and Development, 2021, 58(3): 651-667. CSTR: 32373.14.issn1000-1239.2021.20200186
Citation: Hou Pengpeng, Zhang Heng, Wu Yanjun, Yu Jiageng, Tai Yang, Miao Yuxia. Kernel Configuration Infographic Based on Multi-Label and Its Application[J]. Journal of Computer Research and Development, 2021, 58(3): 651-667. CSTR: 32373.14.issn1000-1239.2021.20200186

基于多标签的内核配置图及其应用

基金项目: 国家自然科学基金项目(62002350);中国科学院战略性先导科技专项(C类)(XDC05040200);广东省重点领域研发计划项目(2019B010154004)
详细信息
  • 中图分类号: TP316.81

Kernel Configuration Infographic Based on Multi-Label and Its Application

Funds: This work was supported by the National Natural Science Foundation of China (62002350), the Strategic Priority Research Program of Chinese Academy of Sciences (XDC05040200), and the Key-Area Research and Development Program of Guangdong Province (2019B010154004).
  • 摘要: Linux内核提供了灵活的内核配置项机制, 便于针对不同的应用场景进行个性化定制.但内核配置项的数量巨大且增长快速, 配置项的默认值在不同内核版本中经常改变, 即使专业的内核团队设置配置项也面临很多挑战.针对上述问题, 提出基于多标签的内核配置图, 该图包含内核配置项间的依赖关系、功能标签、性能标签、安全标签和配置项使能率.此外, 该图提供了可视化功能, 更加直观、高效、人性化.该内核配置图在内核配置项异常值检测、内核启动优化、内核裁剪、内核安全增强、内核性能优化、内核配置项智能问答等场景均可应用.且将内核配置图应用到检索场景, 实现了面向内核配置项的检索框架KCIR(kernel config information retrieval), 该框架基于内核配置图对查询语句和内核配置项描述文本进行了扩展, 实验评估表明KCIR和传统检索框架相比, 检索效果有显著提升, 验证了内核配置图在实际应用中的有效性和实用性.
    Abstract: The Linux kernel provides flexible configuration items to customize the kernel for various application scenarios. However, the number of kernel configuration items is huge and growing rapidly, and the values of configuration items often change in different kernel versions, even professional kernel teams face many challenges when setting the values of configuration items. This paper presents an infographic containing a variety of information for kernel configuration items. The infographic contains the dependencies among configuration items, function labels, performance labels, security labels, and configuration item enable rates. In addition, the infographic provides a visualization interface, which is more intuitive, efficient and user-friendly. The infographic can be widely used in scenarios such as kernel startup optimization, kernel size tailoring, kernel security enhancement, kernel performance optimization, kernel configuration item abnormality detection, kernel configuration item intelliqient question and answering, and kernel configuration item recommendation. To verify the validity of the infographic, we have designed a configuration item-oriented retrieval framework KCIR based on the infographic, which implements query expansion based on multi-label information and text extension based on the dependencies between kernel configuration items, and our experiments demonstrate that KCIR is more effective than the traditional retrieval frameworks. The use of the infographic in the information retrieval field illustrates its effectiveness and practicality.
  • 期刊类型引用(8)

    1. 袁振,侯玉亮,杜宇慧. 面向脑核磁共振识别运动任务的门控循环单元方法. 中国图象图形学报. 2023(02): 589-600 . 百度学术
    2. 姚志武,侯丽娜,文茂华. 基于LSTM算法的大坝坝体渗透压力预测. 水利建设与管理. 2023(08): 54-59 . 百度学术
    3. 潘丹,林灵婷,翁凌雯,李棋,常尧. 基于时空双分支网络的行为检测与识别技术研究. 电子设计工程. 2023(18): 191-195 . 百度学术
    4. 赵佳佳,刘磊. 鱼类集群运动的注意力模型研究. 软件导刊. 2022(06): 36-40 . 百度学术
    5. 郭勇,赵康,潘力. 结合改进Bi-LSTM和CNN的文本情感分析. 信息技术. 2021(02): 50-55 . 百度学术
    6. 高瑞,郝乐,刘宝,文静怡,陈宇航. 基于改进ResNet网络的井下钻杆计数方法. 工矿自动化. 2020(10): 32-37 . 百度学术
    7. 许春冬,徐琅,周滨,凌贤鹏. 单通道语音增强技术的研究现状与发展趋势. 江西理工大学学报. 2020(05): 55-64 . 百度学术
    8. 何永勃,李明伟. 基于循环神经网络的飞机货舱火灾快速识别算法. 消防科学与技术. 2020(11): 1490-1494 . 百度学术

    其他类型引用(14)

计量
  • 文章访问数:  653
  • HTML全文浏览量:  3
  • PDF下载量:  185
  • 被引次数: 22
出版历程
  • 发布日期:  2021-02-28

目录

    /

    返回文章
    返回