• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

移动边缘网络中联邦学习效率优化综述

孙兵, 刘艳, 王田, 彭绍亮, 王国军, 贾维嘉

孙兵, 刘艳, 王田, 彭绍亮, 王国军, 贾维嘉. 移动边缘网络中联邦学习效率优化综述[J]. 计算机研究与发展, 2022, 59(7): 1439-1469. DOI: 10.7544/issn1000-1239.20210119
引用本文: 孙兵, 刘艳, 王田, 彭绍亮, 王国军, 贾维嘉. 移动边缘网络中联邦学习效率优化综述[J]. 计算机研究与发展, 2022, 59(7): 1439-1469. DOI: 10.7544/issn1000-1239.20210119
Sun Bing, Liu Yan, Wang Tian, Peng Shaoliang, Wang Guojun, Jia Weijia. Survey on Optimization of Federated Learning Efficiency in Mobile Edge Networks[J]. Journal of Computer Research and Development, 2022, 59(7): 1439-1469. DOI: 10.7544/issn1000-1239.20210119
Citation: Sun Bing, Liu Yan, Wang Tian, Peng Shaoliang, Wang Guojun, Jia Weijia. Survey on Optimization of Federated Learning Efficiency in Mobile Edge Networks[J]. Journal of Computer Research and Development, 2022, 59(7): 1439-1469. DOI: 10.7544/issn1000-1239.20210119
孙兵, 刘艳, 王田, 彭绍亮, 王国军, 贾维嘉. 移动边缘网络中联邦学习效率优化综述[J]. 计算机研究与发展, 2022, 59(7): 1439-1469. CSTR: 32373.14.issn1000-1239.20210119
引用本文: 孙兵, 刘艳, 王田, 彭绍亮, 王国军, 贾维嘉. 移动边缘网络中联邦学习效率优化综述[J]. 计算机研究与发展, 2022, 59(7): 1439-1469. CSTR: 32373.14.issn1000-1239.20210119
Sun Bing, Liu Yan, Wang Tian, Peng Shaoliang, Wang Guojun, Jia Weijia. Survey on Optimization of Federated Learning Efficiency in Mobile Edge Networks[J]. Journal of Computer Research and Development, 2022, 59(7): 1439-1469. CSTR: 32373.14.issn1000-1239.20210119
Citation: Sun Bing, Liu Yan, Wang Tian, Peng Shaoliang, Wang Guojun, Jia Weijia. Survey on Optimization of Federated Learning Efficiency in Mobile Edge Networks[J]. Journal of Computer Research and Development, 2022, 59(7): 1439-1469. CSTR: 32373.14.issn1000-1239.20210119

移动边缘网络中联邦学习效率优化综述

基金项目: 国家重点研发计划项目(2022YFE0201400); 国家自然科学基金项目(62172046);福建省自然科学基金项目(2020J06023);广东省教育厅普通高校重点专项(2021ZDZX1063);珠海市产学研项目(ZH22017001210133PWC);广东省教育厅人工智能与多模态数据处理重点实验室项目(2020KSYS007);UIC科研启动经费(R72021202)
详细信息
  • 中图分类号: TP391

Survey on Optimization of Federated Learning Efficiency in Mobile Edge Networks

Funds: This work was supported by the National Key Research and Development Program of China (2022YFE0201400), the National Natural Science Foundation of China (62172046), the Natural Science Foundation of Fujian Province of China (2020J06023), the Special Project of Guangdong Provincial Department of Education in Key Fields of Colleges and Universities (2021ZDZX1063), the Joint Project of Production, Teaching and Research of Zhuhai (ZH22017001210133PWC), the Key Laboratory Project for AI and Multi-modal Data Processing of Department of Education of Guangdong Province (2020KSYS007), and the UIC Start-up Research Fund (R72021202).
  • 摘要: 联邦学习(federated learning)将模型训练任务部署在移动边缘设备,参与者只需将训练后的本地模型发送到服务器参与全局聚合而无须发送原始数据,提高了数据隐私性.然而,解决效率问题是联邦学习落地的关键.影响效率的主要因素包括设备与服务器之间的通信消耗、模型收敛速率以及移动边缘网络中存在的安全与隐私风险.在充分调研后,首先将联邦学习的效率优化归纳为通信、训练与安全隐私保护3类.具体来说,从边缘协调与模型压缩的角度讨论分析了通信优化方案;从设备选择、资源协调、聚合控制与数据优化4个方面讨论分析了训练优化方案;从安全与隐私的角度讨论分析了联邦学习的保护机制.其次,通过对比相关技术的创新点与贡献,总结了现有方案的优点与不足,探讨了联邦学习所面临的新挑战.最后,基于边缘计算的思想提出了边缘化的联邦学习解决方案,在数据优化、自适应学习、激励机制和隐私保护等方面给出了创新理念与未来展望.
    Abstract: Federated learning deploys deep learning training tasks on mobile edge networks. Mobile devices participating in learning only need to send the trained local models to the server instead of sending personal data, thereby protecting the data privacy of users. To speed up the implementation of federated learning, optimization of efficiency is the key. The main factors affecting efficiency include communication consumption between device and server, model convergence rate, and security and privacy risk of mobile edge networks. Based on thoroughly investigating the existing optimization methods, we summarize the efficiency optimization of federated learning into communication optimization, training optimization, and protection mechanism for the first time. Specifically, we discuss the optimization of federated learning communication from two aspects of edge computing coordination and model compression which can reduce the frequency of communication and resource consumption. Then, we review the optimization of federated learning process from four elements of device selection, resource coordination, model aggregation control, and data optimization similarly, because there are many heterogeneous factors in the mobile edge networks, such as the different computing resources of mobile devices and different data quality. Furthermore, the security and privacy protection mechanisms of federated learning are expounded. After comparing the innovation points and contributions of related technologies, the advantages and disadvantages of the existing solutions are concluded and the new challenges faced by federated learning are discussed. Finally, we propose edge-intelligent federated learning based on the idea of edge computing, provide innovative methods and future research directions in data optimization, adaptive learning, incentive mechanisms, and advanced technology.
  • 期刊类型引用(13)

    1. 张鑫,张晗,牛曼宇,姬莉霞. 计算机视觉领域对抗样本检测综述. 计算机科学. 2025(01): 345-361 . 百度学术
    2. 张少杰,赵李强,周静波,陈国坤,焦宗寒,杨伟,王欣,刘荣海. 电力行业无人机巡检可见光图像与激光点云数据配准方法研究. 云南电力技术. 2024(02): 70-73+80 . 百度学术
    3. 顾芳铭,况博裕,许亚倩,付安民. 面向自动驾驶感知系统的对抗样本攻击研究综述. 信息安全研究. 2024(09): 786-794 . 百度学术
    4. 武阳,刘靖. 面向图像分析领域的黑盒对抗攻击技术综述. 计算机学报. 2024(05): 1138-1178 . 百度学术
    5. 郭凯威,杨奎武,张万里,胡学先,刘文钊. 面向文本识别的对抗样本攻击综述. 中国图象图形学报. 2024(09): 2672-2691 . 百度学术
    6. 徐宇晖,潘志松,徐堃. 面向三种形态图像的对抗攻击研究综述. 计算机科学与探索. 2024(12): 3080-3099 . 百度学术
    7. 秦书晨,王娟,朱倪宏,陈杨. 图像对抗样本检测与防御方法研究进展. 智能安全. 2024(04): 81-95 . 百度学术
    8. 罗鑫,夏学知. 面向图像识别的对抗样本与攻击研究. 舰船电子工程. 2023(02): 22-29+33 . 百度学术
    9. 杨宏宇,杨帆. 基于图像去噪和图像生成的对抗样本检测方法. 湖南大学学报(自然科学版). 2023(08): 72-81 . 百度学术
    10. 张万里,陈越,杨奎武,张田,胡学先. 一种局部遮挡人脸识别的对抗样本生成方法. 计算机研究与发展. 2023(09): 2067-2079 . 本站查看
    11. 刘瑞祺,李虎,王东霞,赵重阳,李博宇. 图像对抗样本防御技术研究综述. 计算机科学与探索. 2023(12): 2827-2839 . 百度学术
    12. 梁杰,彭长根,谭伟杰,何兴. 基于梯度惩罚WGAN的人脸对抗样本生成方法. 计算机与数字工程. 2023(11): 2659-2665 . 百度学术
    13. 李前,蔺琛皓,杨雨龙,沈超,方黎明. 云边端全场景下深度学习模型对抗攻击和防御. 计算机研究与发展. 2022(10): 2109-2129 . 本站查看

    其他类型引用(17)

计量
  • 文章访问数:  1096
  • HTML全文浏览量:  18
  • PDF下载量:  635
  • 被引次数: 30
出版历程
  • 发布日期:  2022-06-30

目录

    /

    返回文章
    返回