• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

域名滥用行为检测技术综述

樊昭杉, 王青, 刘俊荣, 崔泽林, 刘玉岭, 刘松

樊昭杉, 王青, 刘俊荣, 崔泽林, 刘玉岭, 刘松. 域名滥用行为检测技术综述[J]. 计算机研究与发展, 2022, 59(11): 2581-2605. DOI: 10.7544/issn1000-1239.20210121
引用本文: 樊昭杉, 王青, 刘俊荣, 崔泽林, 刘玉岭, 刘松. 域名滥用行为检测技术综述[J]. 计算机研究与发展, 2022, 59(11): 2581-2605. DOI: 10.7544/issn1000-1239.20210121
Fan Zhaoshan, Wang Qing, Liu Junrong, Cui Zelin, Liu Yuling, Liu Song. Survey on Domain Name Abuse Detection Technology[J]. Journal of Computer Research and Development, 2022, 59(11): 2581-2605. DOI: 10.7544/issn1000-1239.20210121
Citation: Fan Zhaoshan, Wang Qing, Liu Junrong, Cui Zelin, Liu Yuling, Liu Song. Survey on Domain Name Abuse Detection Technology[J]. Journal of Computer Research and Development, 2022, 59(11): 2581-2605. DOI: 10.7544/issn1000-1239.20210121
樊昭杉, 王青, 刘俊荣, 崔泽林, 刘玉岭, 刘松. 域名滥用行为检测技术综述[J]. 计算机研究与发展, 2022, 59(11): 2581-2605. CSTR: 32373.14.issn1000-1239.20210121
引用本文: 樊昭杉, 王青, 刘俊荣, 崔泽林, 刘玉岭, 刘松. 域名滥用行为检测技术综述[J]. 计算机研究与发展, 2022, 59(11): 2581-2605. CSTR: 32373.14.issn1000-1239.20210121
Fan Zhaoshan, Wang Qing, Liu Junrong, Cui Zelin, Liu Yuling, Liu Song. Survey on Domain Name Abuse Detection Technology[J]. Journal of Computer Research and Development, 2022, 59(11): 2581-2605. CSTR: 32373.14.issn1000-1239.20210121
Citation: Fan Zhaoshan, Wang Qing, Liu Junrong, Cui Zelin, Liu Yuling, Liu Song. Survey on Domain Name Abuse Detection Technology[J]. Journal of Computer Research and Development, 2022, 59(11): 2581-2605. CSTR: 32373.14.issn1000-1239.20210121

域名滥用行为检测技术综述

基金项目: 国家重点研发计划项目(2021YFF0307203,2019QY1300,2018YFB0803602);中国科学院青年创新促进会项目(2021156);中国科学院战略性先导科技专项(C类)(XDC02040100);国家自然科学青年科学基金项目(61802404);中国科学院网络评估技术重点实验室资助;北京市网络安全与保护技术重点实验室资助
详细信息
  • 中图分类号: TP391

Survey on Domain Name Abuse Detection Technology

Funds: This work was supported by the National Key Research and Development Program of China (2021YFF0307203, 2019QY1300, 2018YFB0803602), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2021156), the Strategic Priority Research Program of Chinese Academy of Sciences (XDC02040100), the National Natural Science Foundation of China for Young Scientists (61802404), the Project of CAS Key Laboratory of Network Assessment Technology, and the Project of Beijing Key Laboratory of Network Security and Protection Technology.
  • 摘要: 域名系统(domain name system, DNS)是网络和信息时代互联网基础结构的重要组成部分,同时也被多种严重威胁网络安全的攻击活动滥用,例如僵尸网络命令和控制、垃圾邮件分发以及网络钓鱼.从典型检测场景的角度,全面回顾现有的域名滥用检测技术.首先,介绍域名滥用行为检测的背景知识,并通过调研现有域名滥用检测方案,提出域名滥用检测场景分类体系、总结典型检测特征及方法.其次,分别阐述了恶意软件、网络钓鱼、域名抢注、垃圾邮件,以及不限定滥用行为5种典型检测场景下,域名滥用攻防技术演进的过程.并从技术方案、典型特征、检测算法等多个维度进一步全面梳理域名滥用检测工作,对现有的域名滥用检测方法进行系统概述.最后,讨论域名滥用检测技术面临的挑战和未来研究方向,以期改善域名系统的生态环境.
    Abstract: Domain name system is one of the most critical components of the global Internet infrastructure in the network and information age. But it is also being abused by various types of cyber attacks, such as botnet command and control, spam delivery, and phishing, which are emerging as the most serious threat against cyber-security. The existing domain name abuse detection technologies are comprehensively reviewed from the perspective of typical detection scenarios. First, the background knowledge of domain name abuse detection is introduced. By investigating the existing domain name abuse detection schemes, a taxonomy of detection scenarios is put forward. Moreover, the typical features and detection methods are also summarized. Second, the evolution process of attack and defense technologies for domain name abuse in five typical detection scenarios, including malware, phishing, cybersquatting, spam, and unrestricted abuse behavior, are respectively elaborated. Furthermore, an comprehensive summary of domain name abuse detection methods is given from multiple dimensions such as technical solutions, typical features, and detection algorithms. And a systematic overview of existing domain name abuse detection methods is conducted. Finally, the challenges faced by domain name abuse detection technology and future research directions are discussed, with a view to further improve the ecological environment of domain name system.
  • 期刊类型引用(13)

    1. 张鑫,张晗,牛曼宇,姬莉霞. 计算机视觉领域对抗样本检测综述. 计算机科学. 2025(01): 345-361 . 百度学术
    2. 张少杰,赵李强,周静波,陈国坤,焦宗寒,杨伟,王欣,刘荣海. 电力行业无人机巡检可见光图像与激光点云数据配准方法研究. 云南电力技术. 2024(02): 70-73+80 . 百度学术
    3. 顾芳铭,况博裕,许亚倩,付安民. 面向自动驾驶感知系统的对抗样本攻击研究综述. 信息安全研究. 2024(09): 786-794 . 百度学术
    4. 武阳,刘靖. 面向图像分析领域的黑盒对抗攻击技术综述. 计算机学报. 2024(05): 1138-1178 . 百度学术
    5. 郭凯威,杨奎武,张万里,胡学先,刘文钊. 面向文本识别的对抗样本攻击综述. 中国图象图形学报. 2024(09): 2672-2691 . 百度学术
    6. 徐宇晖,潘志松,徐堃. 面向三种形态图像的对抗攻击研究综述. 计算机科学与探索. 2024(12): 3080-3099 . 百度学术
    7. 秦书晨,王娟,朱倪宏,陈杨. 图像对抗样本检测与防御方法研究进展. 智能安全. 2024(04): 81-95 . 百度学术
    8. 罗鑫,夏学知. 面向图像识别的对抗样本与攻击研究. 舰船电子工程. 2023(02): 22-29+33 . 百度学术
    9. 杨宏宇,杨帆. 基于图像去噪和图像生成的对抗样本检测方法. 湖南大学学报(自然科学版). 2023(08): 72-81 . 百度学术
    10. 张万里,陈越,杨奎武,张田,胡学先. 一种局部遮挡人脸识别的对抗样本生成方法. 计算机研究与发展. 2023(09): 2067-2079 . 本站查看
    11. 刘瑞祺,李虎,王东霞,赵重阳,李博宇. 图像对抗样本防御技术研究综述. 计算机科学与探索. 2023(12): 2827-2839 . 百度学术
    12. 梁杰,彭长根,谭伟杰,何兴. 基于梯度惩罚WGAN的人脸对抗样本生成方法. 计算机与数字工程. 2023(11): 2659-2665 . 百度学术
    13. 李前,蔺琛皓,杨雨龙,沈超,方黎明. 云边端全场景下深度学习模型对抗攻击和防御. 计算机研究与发展. 2022(10): 2109-2129 . 本站查看

    其他类型引用(17)

计量
  • 文章访问数: 
  • HTML全文浏览量:  0
  • PDF下载量: 
  • 被引次数: 30
出版历程
  • 发布日期:  2022-10-31

目录

    /

    返回文章
    返回