• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

跨技术通信研究

郭秀珍, 何源

郭秀珍, 何源. 跨技术通信研究[J]. 计算机研究与发展, 2023, 60(1): 191-205. DOI: 10.7544/issn1000-1239.202110441
引用本文: 郭秀珍, 何源. 跨技术通信研究[J]. 计算机研究与发展, 2023, 60(1): 191-205. DOI: 10.7544/issn1000-1239.202110441
Guo Xiuzhen, He Yuan. Research on Cross Technology Communication[J]. Journal of Computer Research and Development, 2023, 60(1): 191-205. DOI: 10.7544/issn1000-1239.202110441
Citation: Guo Xiuzhen, He Yuan. Research on Cross Technology Communication[J]. Journal of Computer Research and Development, 2023, 60(1): 191-205. DOI: 10.7544/issn1000-1239.202110441
郭秀珍, 何源. 跨技术通信研究[J]. 计算机研究与发展, 2023, 60(1): 191-205. CSTR: 32373.14.issn1000-1239.202110441
引用本文: 郭秀珍, 何源. 跨技术通信研究[J]. 计算机研究与发展, 2023, 60(1): 191-205. CSTR: 32373.14.issn1000-1239.202110441
Guo Xiuzhen, He Yuan. Research on Cross Technology Communication[J]. Journal of Computer Research and Development, 2023, 60(1): 191-205. CSTR: 32373.14.issn1000-1239.202110441
Citation: Guo Xiuzhen, He Yuan. Research on Cross Technology Communication[J]. Journal of Computer Research and Development, 2023, 60(1): 191-205. CSTR: 32373.14.issn1000-1239.202110441

跨技术通信研究

基金项目: 国家自然科学基金项目(61772306);国家自然科学基金青年科学基金项目(62202264);中国博士后科学基金项目(2022T150354, 2021M701888);山西省关键核心技术和共性技术研发攻关项目(2020XXX007);中建股份科技研发项目(20212000460);西安市幸福林带建设工程PPP项目(20202000134)
详细信息
    作者简介:

    郭秀珍: 1994年生.清华大学博士后.CCF会员.主要研究方向为物联网、无线网络、无线通信

    何源: 1980年生.博士,副教授.ACM会员,IEEE和CCF高级会员.主要研究方向为无线网络、物联网、普适计算和移动计算

    通讯作者:

    何源(heyuan@tsinghua.edu.cn

  • 中图分类号: TP393

Research on Cross Technology Communication

Funds: This work was supported by the National Natural Science Foundation of China (61772306), the National Natural Science Foundation of China for Young Scientists (62202264), the China Postdoctoral Science Foundation (2022T150354, 2021M701888), the Research and Development Project of Key Core Technology and Generic Technology in Shanxi Province (2020XXX007), the Research and Development Project of China Construction Engineering Corporation (20212000460), and the Smart Xingfu Lindai Project (20202000134).
  • 摘要:

    随着物联网应用的广泛普及,同一区域尤其是室内环境中,各种各样无线网络协议共存的情况越来越普遍,从而导致信道竞争、信号冲突、吞吐下降等严重的干扰问题.相比于传统被动式的干扰避让、容忍和并发机制,不同无线技术之间主动进行数据共享和融合协调才是解决共存问题的关键.跨技术通信方法由此成为近年来学术界和工业界的研究热点,它能够实现异构设备之间直接的数据传输和信息交换.目前大部分的研究成果是针对具体的2种异构无线设备之间跨技术通信的使能技术,但缺少对跨技术通信方法的思考和总结.因此,在重新梳理相关研究的基础上,分析了跨技术通信方法产生的背景和研究意义,总结了现有工作提出的跨技术通信方法,包括基于数据包级别的跨技术通信方法和基于物理层级别的跨技术通信方法,并介绍了跨技术通信的相关应用场景.最后,展望了物联网技术的发展趋势,实现跨网络、跨频率、跨介质的互联互通.

    Abstract:

    The ever-developing Internet of things (IoT) brings the prosperity of wireless sensing and control application. In many scenarios, different wireless technologies coexist in the shared frequency medium as well as the physical space. Such wireless coexistence may lead to serious cross technology interference (CTI) problems, e.g. channel competition, signal collision, throughput degradation. Compared with traditional methods like interference avoidance, tolerance and concurrency mechanism, directly and timely information exchange among heterogeneous devices is therefore a fundamental requirement to ensure the usability, inter-operability and reliability of the IoT. Under this circumstance, cross technology communication (CTC) method thus becomes a hot topic in both academic and industrial field, which aims at directly exchanging data among heterogeneous devices that follow different standards. Most of existing research works focus on the enabling technology of CTC, but lack of thinking and summary of CTC methods. Based on the survey of recent studies in CTC method, we first analyze the background and significance of CTC method. We category existing methods as two classes including packet-level CTC and physical-level CTC, and introduce the application scenarios of CTC method. The potential research directions in this area are further discussed, which is promising to achieve cross-networks, cross-frequency, and cross-medium connections.

  • 图  1   常见无线技术在2.4GHz的频谱分布

    Figure  1.   Frequency distribution of common wireless technologies in 2.4 GHz

    图  2   基于包能量的数据包级别跨技术通信方法

    Figure  2.   Packet-level CTC method based on packet energy

    图  3   基于包长度的数据包级别跨技术通信方法

    Figure  3.   Packet-level CTC method based on packet size

    图  4   基于包间隔的数据包级别跨技术通信方法

    Figure  4.   Packet-level CTC method based on packet interval

    图  5   基于包顺序的数据包级别跨技术通信方法

    Figure  5.   Packet-level CTC method based on packet schedule

    图  6   有/无ZigBee传输情况下WiFi收到的CSI序列

    Figure  6.   CSI sequence received by WiFi with and without ZigBee

    图  7   利用WiFi CSI构建DAFSK波形

    Figure  7.   DAFSK waveform constructed by WiFi CSI

    图  8   基于时域波形模拟的物理层跨技术通信方法

    Figure  8.   Physical-level CTC method based on time-domain emulation

    图  9   WiFi端的信号发送和信号模拟流程

    Figure  9.   Process of WiFi transmission and emulation

    图  10   由时域模拟产生的QAM误差

    Figure  10.   QAM errors caused by time-domain emulation

    图  11   基于数字模拟的物理层跨技术通信方法

    Figure  11.   Physical-level CTC method based on digital emulation

    图  12   基于交叉逆映射的物理层跨技术通信方法

    Figure  12.   Physical-level CTC method based on cross-demapping

    图  13   TwinBee中码片组合的编码方法

    Figure  13.   Chip-combining coding in TwinBee

    图  14   Chiron中的发送机和接收机工作流程

    Figure  14.   Workflow of the sender and the receiver in Chiron

    图  15   WiTag的应用场景

    Figure  15.   The application scenario of WiTag

    图  16   Gatescatter的应用场景

    Figure  16.   The application scenario of Gatescatter

    图  17   Interscatter的应用场景

    Figure  17.   The application scenario of Interscatter

    图  18   利用RFID反射WiFi数据帧

    Figure  18.   Reflection of WiFi beacon by using RFID

    图  19   空气和水的跨介质通信

    Figure  19.   Cross-media communication between air and water

    表  1   数据包级别的跨协议通信技术概览

    Table  1   Overview of Packet-Level CTC Methods

    侧信道方法代表工作链路并发传输吞吐量/bps可靠性
    RSS能量WiZig[47]WiFi→ZigBee不支持154
    StripComm[43]WiFi→ZigBee不支持1100
    长度Esense[32]WiFi→ZigBee不支持
    HoWiES[44]WiFi→ZigBee不支持
    间隔FreeBee[33]WiFi→ZigBee支持31.5
    C-Morse[48]WiFi→ZigBee支持12~137
    顺序EMF[49]WiFi→ZigBee支持203
    PRComm[50]WiFi→ZigBee不支持170~410
    CSI特征序列ZigFi[51]ZigBee→WiFi不支持215.9
    AdaComm[45]ZigBee→WiFi不支持229
    波形构建B2W2[52]Bluetooth→WiFi支持1500
    c-Chirp[46]ZigBee→WiFi不支持90.1
    多普勒频偏DopplerFi[53]Bluetooth→WiFi不支持1590
    下载: 导出CSV

    表  2   物理层级别的跨技术通信方法概览

    Table  2   Overview of Physical-Level CTC Methods

    技术代表工作链路修改
    程度
    并发传输吞吐量
    /kbps
    接收端透明WEBee[55]WiFi→ZigBee支持63
    PMC[56]WiFi→ZigBee支持121.02
    WIDE[57]WiFi→ZigBee支持247.2
    BlueBee[58]BLE→ZigBee不支持225
    发送端透明XBee[59]ZigBee→BLE不支持217
    LEGO-Fi[60]ZigBee→WiFi不支持213.6
    非透明TwinBee[61]WiFi→ZigBee支持
    LongBee[62]WiFi→ZigBee支持
    Chiron[63]WiFi→ZigBee支持223.97
    PIC[64]WiFi→ZigBee支持121.02
    Symphony[65]ZigBee/BLE→LoRa支持3
    下载: 导出CSV

    表  3   跨技术通信方法的上层应用

    Table  3   Upper Layer Application of CTC Method

    代表工作划分设计目标链路
    ECC[69]链路层信道协商WiFi→ZigBee
    ECT[70]网络层数据转发ZigBee→WiFi
    NetCTC[71]网络层ACK机制ZigBee→WiFi
    CRF[72]网络层路由洪泛ZigBee→WiFi
    C-LQI[73]链路层链路质量估计WiFi→ZigBee
    X-MIMO[74]链路层链路质量估计ZigBee→WiFi
    下载: 导出CSV
  • [1]

    IEEE Standard Association. IEEE Standard 802.11[S]. Piscataway, NJ: IEEE, 2012

    [2]

    Zhang Diana, Wang Jingxian, Jang Junsu. On the feasibility of WiFi based material sensing[C/OL] //Proc of the 15th ACM MobiCom. New York: ACM, 2019 [2021-06-05]. https://dl.acm.org/doi/pdf/10.1145/3300061.3345442

    [3]

    IEEE Standard Association. IEEE Standard 802.15. 4[S]. Piscataway, NJ: IEEE, 2003

    [4]

    Park Y, Ha Jihun, Kim H. Enabling sensor network to smartphone interaction using software radios[J]. ACM Transactions on Sensor Networks, 2017, 13(2): 1−26

    [5]

    IEEE Standard Association. IEEE Standard 802.15. 1[S]. Piscataway, NJ: IEEE, 2005

    [6]

    Sheshadri R, Sundaresan K, Chai E. BLU: Blueprinting interference for robust LTE access in unlicensed spectrum[C] //Proc of the 13th ACM CONEXT. New York: ACM, 2017: 15−27

    [7]

    Semtech. LoRa Standard[S/OL]. [2020-10-12]. https://lora-alliance.org

    [8]

    Chen Lili, Xiong Jie, Chen Xiaojiang. WideSee: Towards wide-area contactless wireless sensing[C] //Proc of the 17th ACM SenSys. New York: ACM, 2019: 258−270

    [9]

    Wang Jue, Hassanieh H, Katabi D, et al. Efficient and reliable low-power backscatter networks[C] //Proc of ACM SIGCOMM. New York: ACM, 2012: 61−72

    [10]

    Han Jinsong, Ding Han, Qian Chen, et al. CBID: A customer behavior identification system using passive tags[J]. IEEE/ACM Transactions on Networking, 2016, 24(5): 2885−2898 doi: 10.1109/TNET.2015.2501103

    [11]

    Angrisani L, Bertocco M, Fortin D, et al. Experimental study of coexistence issues between IEEE 802.11b and IEEE 802.15. 4 wireless networks[J]. IEEE Transactions on Instrumentation & Measurement, 2008, 57(8): 1514−1523

    [12] 何源,郑霄龙. 2.4GHz无线网络共存技术研究进展[J]. 计算机研究与发展,2016,53(1):26−37 doi: 10.7544/issn1000-1239.2016.20150654

    He Yuan, Zheng Xiaolong. Research on wireless network co-existence at 2.4GHz[J]. Journal of Computer Research and Development, 2016, 53(1): 26−37 (in Chinese) doi: 10.7544/issn1000-1239.2016.20150654

    [13]

    Huang Jun, Xing Guoliang, Zhou Gang, et al. Beyond co-existence: Exploiting WiFi white space for ZigBee performance assurance[C] //Proc of the 18th IEEE ICNP. Piscataway, NJ: IEEE, 2010: 305−314

    [14]

    Sha Mo, Hackmann G, Lu Chenyang. Arch: Practical channel hopping for reliable home-area sensor networks[C] //Proc of the 17th IEEE RTAS. Piscataway, NJ: IEEE, 2011: 305−315

    [15]

    Jamieson K, Balakrishnan H. PPR: Partial packet recovery for wireless networks[C] //Proc of ACM SIGCOMM. New York: ACM, 2007: 409−420

    [16]

    Hauer J, Willig A, Wolisz A. Mitigating the effects of RF interference through RSSI-based error recovery[C] //Proc of the 7th ACM EWSN. New York: ACM, 2010: 224−239

    [17]

    Liang C M, Priyantha N B, Liu Jie, et al. Surviving WiFi-interference in low power ZigBee networks[C] //Proc of the 8th ACM SenSys. New York: ACM, 2010: 309−322

    [18]

    Gudipati A, Katti S. Strider: Automatic rate adaptation and collision handling[C] //Proc of ACM SIGCOMM. New York: ACM, 2011: 158−169

    [19]

    Gudipati A, Pereira S, Katti S. Automac: Rateless wireless concurrent medium access[C] //Proc of the 18th ACM MobiCom. New York: ACM, 2012: 5−16

    [20]

    Sanabria-Russo L, Barcelo J, Bellalta B, et al. A high efficiency MAC protocol for WLANs: Providing fairness in dense scenarios[J]. IEEE/ACM Transactions on Networking, 2017, 25(1): 492−505 doi: 10.1109/TNET.2016.2587907

    [21]

    Choudhury N, Matam R, Mukherjee M, et al. Adaptive duty cycling in IEEE 802.15.4 cluster tree networks using MAC parameters[C/OL] //Proc of the 18th ACM MobiHoc. New York: ACM, 2017 [2021-02-12]. https://dl.acm.org/doi/pdf/10.1145/3084041.3084069

    [22]

    Nabi M, Geilen M, Basten T, et al. Efficient cluster mobility support for TDMA-based MAC protocols in wireless sensor networks[J]. ACM Transactions on Sensor Network, 2014, 10(4): 1−32

    [23]

    Bharati S, Omar H, Zhuang Weihua. Enhancing transmission collision detection for distributed TDMA in vehicular networks[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2017, 13(37): 1−21

    [24]

    Chang Chengshang, Liao Wanjun, Wu Tsungying. Tight lower bounds for channel hopping schemes in cognitive radio networks[J]. IEEE/ACM Transactions on Networking, 2016, 24(4): 2343−2356 doi: 10.1109/TNET.2015.2453403

    [25]

    Tavakoli R, Nabi M, Basten T, et al. Dependable interference-aware time-slotted channel hopping for wireless sensor networks[J]. ACM Transactions on Sensor Networks, 2018, 14(3): 1−35

    [26]

    Konig M, Wattenhofer R. Effectively capturing attention using the capture effect[C] //Proc of the 14th ACM SenSys. New York: ACM, 2016: 70−82

    [27]

    Mohammad M, Doddavenkatappa M, Chan M. Improving performance of synchronous transmission-based protocols using capture effect over multichannels[J]. ACM Transactions on Sensor Networks, 2017, 13(10): 1−26

    [28]

    Yan Yubo, Yang Panlong, Li Xiangyang, et al. ZIMO: Building cross-technology MIMO to harmonize ZigBee smog with WiFi flash without intervention[C] //Proc of the 19th ACM MobiCom. New York: ACM, 2013: 465−476

    [29]

    Zachariah T, Klugman N, Campbell B, et al. The Internet of things has a gateway problem[C] //Proc of the 16th ACM HotMobile. New York: ACM, 2015: 27−32

    [30]

    Gedela V, Sunil M. Enabling IOT services using WiFi-ZigBee gateway for a home automation system[C] //Proc of IEEE ICRCICN. Piscataway, NJ: IEEE, 2015: 77−80

    [31]

    Shim J, Kim H, Lee N, et al. Smart home gateway system over Bluetooth low energy with wireless energy transfer capability[J]. EURASIP Journal on Wireless Communications and Networking, 2015, 1(5): 1−18

    [32]

    Chebrolu K, Dhekne A. Esense: Communication through energy sensing[C] //Proc of the 15th ACM MobiCom. New York: ACM, 2009: 85−96

    [33]

    Kim S M, He Tian. FreeBee: Cross-technology communication via free side-channel[C] //Proc of the 21st ACM MobiCom. New York: ACM, 2015: 317−330

    [34]

    Chi Zicheng, Li Yan, Huang Zhichuan, et al. Simultaneous bidirectional communications and data forwarding using a single ZigBee data stream[C] //Proc of IEEE INFOCOM. Piscataway, NJ: IEEE, 2019: 577−585

    [35]

    Li Yan, Chi Zicheng, Liu Xin, et al. Passive-ZigBee: Enabling ZigBee communication in IoT networks with 1000x+ less power consumption[C] //Proc of the 16th ACM SenSys. New York: ACM, 2018: 159−171

    [36]

    Jiang Wenchao, Yin Zhimeng, Kim S, et al. Transparent cross-technology communication over data traffic[C/OL] //Proc of IEEE INFOCOM. Piscataway, NJ: IEEE, 2017 [2021-06-05]. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8057086

    [37]

    Shi Junyang, Mu Di, Mo Sha. Lorabee: Cross-technology communication from LoRa to ZigBee via payload encoding[C/OL] //Proc of the 27th IEEE ICNP. Piscataway, NJ: IEEE, 2019 [2020-08-12]. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8888145

    [38]

    Yu Zihao, Jiang Chengkun, He Yuan, et al. Crocs: Cross-technology clock synchronization for WiFi and ZigBee[C] //Proc of ACM EWSN. New York: ACM, 2018: 135−144

    [39]

    Chen Gonglong, Dong Wei. Jamcloak: Reactive jamming attack over cross technology communication links[C] //Proc of the 26th IEEE ICNP. Piscataway, NJ: IEEE, 2018: 34−43

    [40]

    Jiang Yonghang, Li Zhenjiang, Wang Jianping. PTrack: Enhancing the applicability of pedestrian tracking with wearables[J]. IEEE/ACM Transactions on Mobile Computing, 2019, 18(2): 431−443 doi: 10.1109/TMC.2018.2837758

    [41]

    Liu Ruofeng, Yin Zhimeng, Jiang Wenchao, et al. WiBeacon: Expanding BLE location-based services via WiFi[C] //Proc of the 27th ACM MobiCom, New York: ACM, 2021: 15−28

    [42]

    Hofmann R, Boano C, Romer K. X-burst: Enabling multiplatform cross-technology communication between constrained IoT devices[C] //Proc of the 16th IEEE SECON. Piscataway, NJ: IEEE, 2019: 97−106

    [43]

    Zheng Xiaolong, He Yuan, Guo Xiuzhen. StripComm: Interference-resilient cross-technology communication in coexisting environments[C] //Proc of IEEE INFOCOM. Piscataway, NJ: IEEE, 2018: 171−179

    [44]

    Zhang Yifan, Li Qun. HoWiES: A holistic approach to ZigBee assisted WiFi energy savings in mobile devices[C] //Proc of IEEE INFOCOM. Piscataway, NJ: IEEE, 2018: 1366−1375

    [45]

    Wang Weiguo, Zheng Xiaolong, He Yuan, et al. AdaComm: Tracing channel dynamics for reliable cross-technology communication[C/OL] //Proc of the 16th IEEE SECON. Piscataway, NJ: IEEE, 2019 [2020-05-07]. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=arnumber=8824843

    [46]

    Xia Dan, Zheng Xiaolong, Liu Liang, et al. c-Chirp: Towards symmetric cross-technology communication over asymmetric channels[C/OL] //Proc of the 17th IEEE SECON. Piscataway, NJ: IEEE, 2020 [2021-01-16]. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9158411

    [47]

    Guo Xiuzhen, Zheng Xiaolong, He Yuan. WiZig: Cross-technology energy communication over a noisy channel[C/OL] //Proc of IEEE INFOCOM. Piscataway, NJ: IEEE, 2017 [2020-04-18]. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8057108

    [48]

    Jiang Wenchao, Yin Zhimeng, Kim S. M, et al. C-Morse: Cross-technology communication with transparent Morse coding[C/OL] //Proc of IEEE INFOCOM. Piscataway, NJ: IEEE, 2017 [2020-04-18].https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8057107

    [49]

    Chi Zicheng, Huang Zhichuan, Yao Yao, et al. EMF: Embedding multiple flows of information in existing traffic for concurrent communication among heterogeneous IoT devices[C/OL] //Proc of IEEE INFOCOM. Piscataway, NJ: IEEE, 2017 [2020-05-26]. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8057109

    [50]

    Wang Wei, He Dingsheng, Jia Wan, et al. PRComm: Anti-interference cross-technology communication based on pseudo-random sequence[C] //Proc of the 20th IEEE IPSN. Piscataway, NJ: IEEE, 2021: 14−26

    [51]

    Guo Xiuzhen, He Yuan, Zheng Xiaolong, et al. ZigFi: Harnessing channel state information for cross-technology communication[C] //Proc of IEEE INFOCOM. Piscataway, NJ: IEEE, 2018: 360−369

    [52]

    Chi Zicheng, Li Yan, Sun Hongyu, et al. B2W2: N-way concurrent communication for IoT devices[C] //Proc of the 14th ACM SenSys. New York: ACM, 2016: 245−258

    [53]

    Wang Wei, He Shiyue, Sun Liang, et al. Cross-technology communications for heterogeneous IoT devices through artificial doppler shifts[J]. IEEE Transactions on Wireless Communications, 2019, 18(2): 796−806 doi: 10.1109/TWC.2018.2883443

    [54]

    Li Zhenjiang, Xie Yaxiong, Li Mo, et al. Recitation: Rehearsing wireless packet reception in software[C] //Proc of the 21st ACM MobiCom. New York: ACM, 2015: 291−303

    [55]

    Li Zhijun, He Tian. WEBee: Physical-layer cross-technology communication via emulation[C] //Proc of the 23rd ACM MobiCom. New York: ACM, 2017: 2−14

    [56]

    Chi Zicheng, Li Yan, Yao Yao, et al. PMC: Parallel multi-protocol communication to heterogeneous IoT radios within a single WiFi channel[C] //Proc of the 25th IEEE ICNP. Piscataway, NJ: IEEE, 2017: 31−39

    [57]

    Guo Xiuzhen, He Yuan, Zhang Jia, et al. WIDE: Physical-level CTC via digital emulation[C] //Proc of the 18th ACM IPSN. New York: ACM, 2019: 49−60

    [58]

    Jiang Wenchao, Yin Zhimeng, Liu Ruofeng, et al. BlueBee: A 10, 000x faster cross-technology communication via PHY emulation[C] //Proc of the 15th ACM SenSys. New York: ACM, 2017: 14−26

    [59]

    Jiang Wenchao, Kim S M, Li Zhijun, et al. Achieving receiver-side cross-technology communication with cross-decoding[C] //Proc of the 24th ACM MobiCom. New York: ACM, 2018: 639−652

    [60]

    Guo Xiuzhen, He Yuan, Zheng Xiaolong, et al. LEGO-Fi: Transmitter-transparent CTC with cross-demapping[C] //Proc of IEEE INFOCOM. Piscataway, NJ: IEEE, 2019: 2125−2134

    [61]

    Chen Yongrui, Li Zhijun, He Tian. TwinBee: Reliable physical-layer cross technology communication with symbol-level coding[C] //Proc of IEEE INFOCOM. Piscataway, NJ: IEEE, 2018: 153−162

    [62]

    Li Zhijun, He Tian. LongBee: Enabling long-range cross-technology communication[C] //Proc of IEEE INFOCOM. Piscataway, NJ: IEEE, 2018: 162−171

    [63]

    Li Yan, Chi Zicheng, Liu Xin, et al. Chiron: Concurrent high throughput communication for IoT devices[C] //Proc of the 16th ACM MobiSys. New York: ACM, 2018: 204−216

    [64]

    Chi Zicheng, Li Yan, Liu Xin, et al. Parallel inclusive communication for connecting heterogeneous IoT devices at the edge[C] //Proc of the 17th ACM SenSys. New York: ACM, 2019: 205−218

    [65]

    Li Zhijun, Chen Yongrui. Achieving universal low-power wide-area networks on existing wireless devices[C/OL] //Proc of the 27th IEEE ICNP. Piscataway, NJ: IEEE, 2019 [2020-05-16]. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8888066

    [66]

    Liu Ruofeng, Yin Zhimeng, Jiang Wenchao, et al. Lte2b: Time-domain crosstechnology emulation under LTE constraints[C] //Proc of the 17th ACM SenSys. New York: ACM, 2019: 179−191

    [67]

    Wang Shuai, Kim S, He Tian. Symbol-level cross-technology communication via payload encoding[C] //Proc of the 38th IEEE ICDCS. Piscataway, NJ: IEEE, 2018: 500−509

    [68]

    Li Lianggan, Chen Yongrui, Li Zhijun. Physical-layer cross-technology communication with narrow-band decoding[C/OL] //Proc of the 27th IEEE ICNP. Piscataway, NJ: IEEE, 2019 [2020-09-28]. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8888132

    [69]

    Yin Zhimeng, Li Zhijun, Kim S M, et al. Explicit channel coordination via cross-technology communication[C] //Proc of the 16th ACM MobiSys. New York: ACM, 2018: 178−190

    [70]

    Wang Wei, Xie Tiantian, Liu Xin, et al. ECT: Exploiting cross-technology concurrent transmission for reducing packet delivery delay in IoT networks[C] //Proc of IEEE INFOCOM. Piscataway, NJ: IEEE, 2018: 369−378

    [71]

    Wang Shuai, Yin Zhimeng, Li Zhijun, et al. Networking support for physical layer cross-technology communication[C] //Proc of the 26th IEEE ICNP. Piscataway, NJ: IEEE, 2018: 259−270

    [72]

    Wang Wei, Liu Xin, Yao Yao, et al. CRF: Coexistent routing and flooding using WiFi packets in heterogeneous IoT networks[C/OL] //Proc of IEEE INFOCOM. Piscataway, NJ: IEEE, 2019 [2020-08-26].https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8737525

    [73]

    Zhang Jia, Guo Xiuzhen, Jiang Haotian, et al. Link quality estimation of cross-technology communication[C] //Proc of IEEE INFOCOM. Piscataway, NJ: IEEE, 2020: 496−506

    [74]

    Wang Shuai, Jeong W, Jung J, et al. X-MIMO: Cross-technology multi-user MIMO[C] //Proc of the 18th ACM SenSys. New York: ACM, 2020: 218−231

    [75]

    Croce D, Galioto N, Garlisi D, et al. An inter-technology communication scheme for WiFi/ZigBee coexisting networks[C] //Proc of the 14th ACM EWSN. New York: ACM, 2017: 305−310

    [76]

    Iqbal H, Alizai M, Qazi I, et al. Scylla: Interleaving multiple IoT stacks on a single radio[C] //Proc of the 14th ACM CoNEXT. New York: ACM, 2018: 346−352

    [77]

    Chae Y, Wang Shuai, Kim S M. Exploiting WiFi guard band for safeguarded ZigBee[C] //Proc of the 16th ACM SenSys. New York: ACM, 2018: 172−184

    [78]

    Abedi A, Dehbashi F, Mazaheri M H. WiTag: Seamless WiFi Backscatter communication[C] //Proc of ACM SIGCOMM. New York: ACM, 2020: 240−252

    [79]

    Jung J, Ryoo J, Yi Y, et al. Gateway over the air: Toward pervasive Internet connectivity for commodity IoT[C] //Proc of the 18th ACM MobiSys. New York: ACM, 2020: 54−66

    [80]

    Iyer V, Talla V, Kellogg B, et al. Intertechnology backscatter: Towards Internet connectivity for implanted devices[C] //Proc of ACM SIGCOMM. New York: ACM, 2016: 356−369

    [81]

    An Zhenlin, Lin Qiongzheng, Yang Lei. Cross-frequency communication: Near-field identification of UHF RFIDs with WiFi[C] //Proc of the 24th ACM MobiCom. New York: ACM, 2018: 826−828

    [82]

    Allane D, Vera G, Duroc Y, et al. Harmonic power harvesting system for passive RFID sensor tag[J]. IEEE Transactions on Microwave Theory and Techniques, 2016, 64(7): 2347−2356 doi: 10.1109/TMTT.2016.2574990

    [83]

    Tonolini F, Adib F. Networking across boundaries: Enabling wireless communication through the water-air interface[C] //Proc of ACM SIGCOMM. New York: ACM, 2018: 117−131

    [84]

    Carver C, Tian Zhao, Zhang Hongyong, et al. AmphiLight: Direct air-water communication with laser light[C] //Proc of the 17th USENIX NSDI. Berkeley, CA: USENIX Association, 2020: 373−388

  • 期刊类型引用(2)

    1. 刘阳,鲁圆圆,郭成城. 基于优先级的数据中心任务优化调度算法设计. 计算机仿真. 2025(01): 497-500+507 . 百度学术
    2. 骆海霞. 基于递推估计的Web前端偶发任务能耗感知方法. 黑龙江工业学院学报(综合版). 2023(10): 115-120 . 百度学术

    其他类型引用(1)

图(19)  /  表(3)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  33
  • PDF下载量:  118
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-05-06
  • 修回日期:  2021-12-23
  • 网络出版日期:  2023-02-10
  • 刊出日期:  2022-12-31

目录

    /

    返回文章
    返回