Intuitionistic Fuzzy Entropy Feature Selection Algorithm Based on Adaptive Neighborhood Space Rough Set Model
-
摘要: 特征选择是数据预处理中一项很重要的技术,主要从原始数据集的特征中选出一些最有效的特征以降低数据集的维度,从而提高学习算法性能.目前基于邻域粗糙集模型的特征选择算法中,由于没有考虑数据分布不均的问题,对象的邻域存在一定的缺陷.为了解决这个问题,采用方差来度量数据的分布情况,重新定义二元邻域空间,基于此提出自适应二元邻域空间的粗糙集模型,并将该模型与邻域直觉模糊熵结合作为特征评估的方式,进而构造相应的特征选择算法.UCI实验结果表明:所提出的算法能够选出更小且具有更高分类精度的特征子集,同时算法拥有更少的时间消耗.因此所提的特征选择算法具有更强的优越性.Abstract: Feature selection is a very vital technology in data preprocessing.In this method, some most effective features are mainly selected from the features of original data sets, which is aimed to reduce the dimension of data sets.Accordingly, the performance of the learning algorithm can be improved.In the feature selection algorithms based on the neighborhood rough set model, without considering data uneven distribution, there currently exist some defects in the neighborhood of object.To solve this problem of data uneven distribution, variance is adapted to measure the distribution of the data, and the binary neighborhood space is redefined, then the rough set model of the adaptive binary neighborhood space is proposed according to this binary neighborhood space.As well as, the new rough set model of the adaptive binary neighborhood space is combined with the neighborhood intuitionistic fuzzy entropy as the method of the evaluation of features, and then the corresponding feature selection algorithm is also constructed.The experimental results of UCI show that the proposed intuitionistic fuzzy entropy feature selection algorithm can select smaller feature subsets which have higher accuracy of classification, at the same time, the intuitionistic fuzzy entropy feature selection algorithm based on adaptive neighborhood space rough set model also has less time consumption.Therefore, the proposed feature selection algorithm has stronger superiority in this paper.
-
-
期刊类型引用(14)
1. 孙林,马天娇. 基于中心偏移的Fisher score与直觉邻域模糊熵的多标记特征选择. 计算机科学. 2024(07): 96-107 . 百度学术
2. 袁钟 ,陈红梅 ,王志红 ,李天瑞 . 利用混杂核模糊补互信息选择特征. 计算机研究与发展. 2023(05): 1111-1120 . 本站查看
3. 杨璇,马建敏,赵曼君. 基于邻域互信息的高维时序数据特征选择. 计算机工程. 2023(07): 135-142+149 . 百度学术
4. 马明艳,陈伟,吴礼发. 基于CNN_BiLSTM网络的入侵检测方法. 计算机工程与应用. 2022(10): 116-124 . 百度学术
5. 孙林,梁娜,徐久成. 基于自适应邻域互信息与谱聚类的特征选择. 山东大学学报(理学版). 2022(12): 13-24 . 百度学术
6. 刘文,米据生,孙妍. 一种新的犹豫模糊粗糙近似算子的公理刻画. 计算机研究与发展. 2021(09): 2062-2070 . 本站查看
7. 王翔,谢胜军. 加权社会网络低维冗余数据快速挖掘算法仿真. 计算机仿真. 2021(08): 372-375+477 . 百度学术
8. 张敏,彭红伟,颜晓玲. 基于神经网络的模糊决策树改进算法. 计算机工程与应用. 2021(21): 174-179 . 百度学术
9. 张仕斌,黄曦,昌燕,闫丽丽,程稳. 大数据环境下量子机器学习的研究进展及发展趋势. 电子科技大学学报. 2021(06): 802-819 . 百度学术
10. 姚晟,陈菊,吴照玉. 一种基于邻域容差信息熵的组合度量方法. 小型微型计算机系统. 2020(01): 46-50 . 百度学术
11. 徐道磊,陈培林,唐轶轩,吴尚,路宇,卞显福. 一种新的决策粗糙集最小化决策代价属性约简算法. 微电子学与计算机. 2020(08): 55-60+65 . 百度学术
12. 姚晟,吴照玉,陈菊,王维. 基于决策理论粗糙集的一种新属性约简方法. 微电子学与计算机. 2019(05): 76-81 . 百度学术
13. 段海玲,王光琼. 一种高效的复杂信息系统增量式属性约简. 华南理工大学学报(自然科学版). 2019(06): 18-30 . 百度学术
14. 龚芝,陈志伟,马凌. 不完备信息系统中一种新的不确定性度量方法. 测控技术. 2018(11): 116-119+124 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 1440
- HTML全文浏览量: 3
- PDF下载量: 695
- 被引次数: 21