• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于主题序列模式的旅游产品推荐引擎

朱桂祥, 曹杰

朱桂祥, 曹杰. 基于主题序列模式的旅游产品推荐引擎[J]. 计算机研究与发展, 2018, 55(5): 920-932. DOI: 10.7544/issn1000-1239.2018.20160926
引用本文: 朱桂祥, 曹杰. 基于主题序列模式的旅游产品推荐引擎[J]. 计算机研究与发展, 2018, 55(5): 920-932. DOI: 10.7544/issn1000-1239.2018.20160926
Zhu Guixiang, Cao Jie. A Recommendation Engine for Travel Products Based on Topic Sequential Patterns[J]. Journal of Computer Research and Development, 2018, 55(5): 920-932. DOI: 10.7544/issn1000-1239.2018.20160926
Citation: Zhu Guixiang, Cao Jie. A Recommendation Engine for Travel Products Based on Topic Sequential Patterns[J]. Journal of Computer Research and Development, 2018, 55(5): 920-932. DOI: 10.7544/issn1000-1239.2018.20160926
朱桂祥, 曹杰. 基于主题序列模式的旅游产品推荐引擎[J]. 计算机研究与发展, 2018, 55(5): 920-932. CSTR: 32373.14.issn1000-1239.2018.20160926
引用本文: 朱桂祥, 曹杰. 基于主题序列模式的旅游产品推荐引擎[J]. 计算机研究与发展, 2018, 55(5): 920-932. CSTR: 32373.14.issn1000-1239.2018.20160926
Zhu Guixiang, Cao Jie. A Recommendation Engine for Travel Products Based on Topic Sequential Patterns[J]. Journal of Computer Research and Development, 2018, 55(5): 920-932. CSTR: 32373.14.issn1000-1239.2018.20160926
Citation: Zhu Guixiang, Cao Jie. A Recommendation Engine for Travel Products Based on Topic Sequential Patterns[J]. Journal of Computer Research and Development, 2018, 55(5): 920-932. CSTR: 32373.14.issn1000-1239.2018.20160926

基于主题序列模式的旅游产品推荐引擎

基金项目: 国家自然科学基金项目(91646204,71372188);国家电子商务信息处理联合研究中心项目(2013B01035);江苏省科技支撑计划工业项目(BE2014141);江苏省属高校自然科学研究重大项目(14KJA520001)
详细信息
  • 中图分类号: TP391

A Recommendation Engine for Travel Products Based on Topic Sequential Patterns

  • 摘要: 旅游产品推荐是当前推荐系统研究领域中的新兴议题之一.由于旅游产品描述信息维度多样复杂、“用户-产品”关联矩阵极为稀疏且冷启动问题突出,已经在电子商务领域获得成功的协同过滤推荐往往难以直接被应用于旅游产品推荐.提出基于主题序列模式的旅游产品推荐引擎SECT,试图通过在线旅游网站点击日志的挖掘产生推荐.首先,从页面语义描述文本中挖掘主题,以在泛化层面捕捉用户行为模式;其次,从页面访问时间序列数据中挖掘频繁序列模式及其候选产品集,形成序列模式库;最后,提出Markov n-gram模型,完成用户实时点击流与模式库匹配计算.为了提升在线匹配计算的效率,设计一种新的多叉树数据结构PSC-tree用于存储历史模式库,并与在线计算模块无缝衔接.在真实旅游数据集上的实验结果表明:该推荐引擎比传统推荐算法具有更优越的性能,而且能有效提升冷启动用户的推荐率和准确率.此外,针对长尾物品的推荐,SECT也优于基准算法.
    Abstract: Travel products recommendation has become one of emerging issues in the realm of recommendation systems. The widely-used collaborative filtering algorithms are usually difficult to be used for recommending travel products due to a number of reasons, including: 1) the content of travel products is very complex, 2) the user-item matrix is extremely sparse, and 3) the cold-start users are widely existing. To tackle these issues, we try to exploit Web server logs for generating recommenda-tion, and present a novel recommendation engine (SECT for short) for travel products based on topic sequential patterns. In detail, we first extract topics from semantic description of every Web page. Then, we mine topic frequent sequential patterns and their target products to form click patterns library. At last, we propose a Markov n-gram model for matching the real-time click-stream of users with the click patterns library and thus computing recommendation scores. To enhance the efficiency of online computing, we design a new multi-branch tree data structures called PSC-tree to store the historical click patterns library and integrate with online computing module seamlessly. Experimental results on a real-world travel dataset demonstrate that the SECT prevails over the state-of-art baseline algorithms. In particular, SECT shows merits in improving both the coverage and accuracy for recommending products to cold-start users. Also, SECT is effective to recommend long tail items and outperform baseline algorithms.
  • 期刊类型引用(7)

    1. 杨秀璋,武帅,宋籍文,廖文婧,任天舒,刘建义. 基于LDA和关系图谱的数据治理文献主题演化研究. 信息技术与信息化. 2022(08): 6-12 . 百度学术
    2. 黄飞杰,张卫东,侯石鹏,宋红文. 基于GSP算法的卷烟消费者研究. 信息与电脑(理论版). 2022(16): 58-60 . 百度学术
    3. 张瑾,朱桂祥,王宇琛,郑烁佳,陈镜潞. 基于异质图表达学习的跨境电商推荐模型. 电子与信息学报. 2022(11): 4008-4017 . 百度学术
    4. 冯晨娇,宋鹏,王智强,梁吉业. 一种基于3因素概率图模型的长尾推荐方法. 计算机研究与发展. 2021(09): 1975-1986 . 本站查看
    5. 牛俊洁,崔忠伟,赵晨洁,王永金,吴恋. 个性化旅游推荐技术研究及发展综述. 物联网技术. 2020(03): 86-88+91 . 百度学术
    6. 史亚奇. 基于人性化特征的旅游地智能推荐系统. 现代电子技术. 2020(11): 183-186 . 百度学术
    7. 张如花,屈正庚. 基于AHP的旅游网站评价体系研究. 甘肃科学学报. 2019(05): 32-36 . 百度学术

    其他类型引用(11)

计量
  • 文章访问数:  1385
  • HTML全文浏览量:  4
  • PDF下载量:  705
  • 被引次数: 18
出版历程
  • 发布日期:  2018-04-30

目录

    /

    返回文章
    返回