Topic-Interest Based Influence Maximization Algorithm in Social Networks
-
摘要: 影响最大化问题是在社交网中寻找对传播项最具影响力的种集,使得传播项的传播范围最大.目前的研究只考虑了传播项上主题的分布,而忽略了用户本身的兴趣分布.在传播项的主题分布和用户的兴趣分布都被考虑的条件下,研究如何选取最具影响力的种集.首先提出了基于主题兴趣的独立级联传播模型TI-IC,并利用期望最大化算法求学习TI-IC模型参数;然后在TI-IC模型基础上提出了基于主题兴趣的影响最大化问题TIIM,并提出了求解TIIM问题的启发式算法ACG-TIIM.ACG-TIIM首先构造以每个用户为根的可达路径树,快速粗略预估每个用户的影响范围;然后根据预估的影响范围排序所有结点并选择少量结点作为候选种子;最后使用带有EFLF优化的贪心算法从候选种子中选择最具影响力的种集.多个真实数据集上的实验结果表明:在描述传播规律和预测传播结果方面,TI-IC模型优于经典的IC模型和TIC模型.ACG-TIIM算法可以有效并高效地求解基于主题兴趣的影响最大化问题.Abstract: Influence maximization is a problem of finding a small set of seed nodes in a social network that maximizes the spread scope of a propagation item. Existing works only take into account the topic distribution on propagation items, but ignore the interest distribution on users. This paper focuses on how to select the most influential seeds when both the topic distribution of propagation items and the interest distribution of users are taken into consideration. A topic-interest independent cascade (TI-IC) propagation model is proposed, and an expectation maximization (EM) algorithm is proposed to learn the parameters of the TI-IC model. Based on the TI-IC model, a topic-interest influence maximization (TIIM) problem is proposed, and a new heuristic algorithm called ACG-TIIM is presented to solve TIIM. ACG-TIIM first takes each user as a root node to construct a reachable path tree, roughly estimate the influence scope of each user, and then sorts all the users according to the estimated influence scope to select a small number of users as candidate seeds, finally uses the greedy algorithm with EFLF optimization to select the most influential seeds from candidate seeds. The experimental results on real datasets show that TI-IC model is superior to classical IC and TIC models in describing propagation law and predicting propagation results. ACG-TIIM can solve the TIIM problem effectively and efficiently.
-
-
期刊类型引用(14)
1. 孙林,马天娇. 基于中心偏移的Fisher score与直觉邻域模糊熵的多标记特征选择. 计算机科学. 2024(07): 96-107 . 百度学术
2. 袁钟 ,陈红梅 ,王志红 ,李天瑞 . 利用混杂核模糊补互信息选择特征. 计算机研究与发展. 2023(05): 1111-1120 . 本站查看
3. 杨璇,马建敏,赵曼君. 基于邻域互信息的高维时序数据特征选择. 计算机工程. 2023(07): 135-142+149 . 百度学术
4. 马明艳,陈伟,吴礼发. 基于CNN_BiLSTM网络的入侵检测方法. 计算机工程与应用. 2022(10): 116-124 . 百度学术
5. 孙林,梁娜,徐久成. 基于自适应邻域互信息与谱聚类的特征选择. 山东大学学报(理学版). 2022(12): 13-24 . 百度学术
6. 刘文,米据生,孙妍. 一种新的犹豫模糊粗糙近似算子的公理刻画. 计算机研究与发展. 2021(09): 2062-2070 . 本站查看
7. 王翔,谢胜军. 加权社会网络低维冗余数据快速挖掘算法仿真. 计算机仿真. 2021(08): 372-375+477 . 百度学术
8. 张敏,彭红伟,颜晓玲. 基于神经网络的模糊决策树改进算法. 计算机工程与应用. 2021(21): 174-179 . 百度学术
9. 张仕斌,黄曦,昌燕,闫丽丽,程稳. 大数据环境下量子机器学习的研究进展及发展趋势. 电子科技大学学报. 2021(06): 802-819 . 百度学术
10. 姚晟,陈菊,吴照玉. 一种基于邻域容差信息熵的组合度量方法. 小型微型计算机系统. 2020(01): 46-50 . 百度学术
11. 徐道磊,陈培林,唐轶轩,吴尚,路宇,卞显福. 一种新的决策粗糙集最小化决策代价属性约简算法. 微电子学与计算机. 2020(08): 55-60+65 . 百度学术
12. 姚晟,吴照玉,陈菊,王维. 基于决策理论粗糙集的一种新属性约简方法. 微电子学与计算机. 2019(05): 76-81 . 百度学术
13. 段海玲,王光琼. 一种高效的复杂信息系统增量式属性约简. 华南理工大学学报(自然科学版). 2019(06): 18-30 . 百度学术
14. 龚芝,陈志伟,马凌. 不完备信息系统中一种新的不确定性度量方法. 测控技术. 2018(11): 116-119+124 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 1052
- HTML全文浏览量: 1
- PDF下载量: 454
- 被引次数: 21