• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

融合多元信息的多关系社交网络节点重要性研究

罗浩, 闫光辉, 张萌, 包峻波, 李俊成, 刘婷, 杨波, 魏军

罗浩, 闫光辉, 张萌, 包峻波, 李俊成, 刘婷, 杨波, 魏军. 融合多元信息的多关系社交网络节点重要性研究[J]. 计算机研究与发展, 2020, 57(5): 954-970. DOI: 10.7544/issn1000-1239.2020.20190331
引用本文: 罗浩, 闫光辉, 张萌, 包峻波, 李俊成, 刘婷, 杨波, 魏军. 融合多元信息的多关系社交网络节点重要性研究[J]. 计算机研究与发展, 2020, 57(5): 954-970. DOI: 10.7544/issn1000-1239.2020.20190331
Luo Hao, Yan Guanghui, Zhang Meng, Bao Junbo, Li Juncheng, Liu Ting, Yang Bo, Wei Jun. Research on Node Importance Fused Multi-Information for Multi-Relational Social Networks[J]. Journal of Computer Research and Development, 2020, 57(5): 954-970. DOI: 10.7544/issn1000-1239.2020.20190331
Citation: Luo Hao, Yan Guanghui, Zhang Meng, Bao Junbo, Li Juncheng, Liu Ting, Yang Bo, Wei Jun. Research on Node Importance Fused Multi-Information for Multi-Relational Social Networks[J]. Journal of Computer Research and Development, 2020, 57(5): 954-970. DOI: 10.7544/issn1000-1239.2020.20190331
罗浩, 闫光辉, 张萌, 包峻波, 李俊成, 刘婷, 杨波, 魏军. 融合多元信息的多关系社交网络节点重要性研究[J]. 计算机研究与发展, 2020, 57(5): 954-970. CSTR: 32373.14.issn1000-1239.2020.20190331
引用本文: 罗浩, 闫光辉, 张萌, 包峻波, 李俊成, 刘婷, 杨波, 魏军. 融合多元信息的多关系社交网络节点重要性研究[J]. 计算机研究与发展, 2020, 57(5): 954-970. CSTR: 32373.14.issn1000-1239.2020.20190331
Luo Hao, Yan Guanghui, Zhang Meng, Bao Junbo, Li Juncheng, Liu Ting, Yang Bo, Wei Jun. Research on Node Importance Fused Multi-Information for Multi-Relational Social Networks[J]. Journal of Computer Research and Development, 2020, 57(5): 954-970. CSTR: 32373.14.issn1000-1239.2020.20190331
Citation: Luo Hao, Yan Guanghui, Zhang Meng, Bao Junbo, Li Juncheng, Liu Ting, Yang Bo, Wei Jun. Research on Node Importance Fused Multi-Information for Multi-Relational Social Networks[J]. Journal of Computer Research and Development, 2020, 57(5): 954-970. CSTR: 32373.14.issn1000-1239.2020.20190331

融合多元信息的多关系社交网络节点重要性研究

基金项目: 国家自然科学基金项目(61662066,61163010);甘肃省青年科技基金计划项目(1606RJYA222)
详细信息
  • 中图分类号: TP18; TP301

Research on Node Importance Fused Multi-Information for Multi-Relational Social Networks

Funds: This work was supported by the National Natural Science Foundation of China (61662066, 61163010) and the Technique Foundation Program for Young Scientists of Gansu Province (1606RJYA222).
  • 摘要: 识别重要节点是社会网络分析领域的重要任务之一,也是理解复杂网络结构和动力学特性的有效方式,迄今发展起来的节点重要性分析框架主要面向单关系网络.多关系网络作为准确刻画现实世界复杂系统的典型建模形式,已成为当前网络科学领域研究的热点,但对于多关系网络的节点重要性研究尚缺乏系统性的研究成果.针对多关系社交网络节点重要性研究问题,通过构建有向多重网络模型和基于张量代数的数学框架对其进行建模和分析,将中心性、声望和传递性作为影响社交网络节点重要性的关键因素,提出了一种面向多关系社交网络的节点重要性度量指标,并针对其存在不足引入D-S(Dempster-Shafer)证据理论进行改进,进一步提出了IOMEC(in-degree out-degree multiplex evidential centrality)节点重要性度量方法.在4个真实网络上的实验结果表明:采取信息融合的方法可以有效消除多关系网络耦合信息和传递机制对节点重要性评测造成的影响,提出的IOMEC方法能够更准确地对节点重要性进行度量,并且具有较低的时间复杂度,在论证节点中心性和声望是衡量节点重要程度主要因素的同时,说明了综合考虑节点传递性的必要性.所做工作为多关系网络节点重要性研究提供新的思路方法的同时,进一步拓展了信息融合技术的应用场景.
    Abstract: Identifying critical nodes is one of the principal tasks of social network analysis, and it is essential to understand the structure and dynamic characteristics of the complex networks. However, the analysis framework of node importance mainly focuses on single-relational networks. As a typical model of the real world, the multi-relational network has become one of the hot topics in the field of network science, in which the research on node importance lacks systematic research. Focusing on the study of node importance in multi-relational social networks, we create the directed multiplex network model to describe a multi-relational network and use the representation framework based on tensor algebra to analyze it. Meanwhile, we propose a measure of node importance considered the influence of centrality, prestige, transitivity in multi-relational social networks. Considering the influence of coupling information and the difference of transmission mechanism for node importance on multi-relational networks, in this work we improve the method and propose another more efficient method called IOMEC to evaluate the node importance. Experimental results on four real networks show that the method of information fusion can effectively eliminate the influence on node importance evaluation, which is caused by the coupling information and the transmission mechanism of the multi-relational network. The IOMEC method can measure the importance of nodes more accurately and has lower time complexity. The experimental results demonstrate that centrality and prestige are the main factors to evaluate the node importance and the necessity of considering the transitivity of nodes. In this work we not only provide new ideas and methods for evaluating node importance for multi-relational networks but also expand the application of information fusion technology.
  • 期刊类型引用(12)

    1. 杨兴耀,肖瑞,卢进堂. 新疆维吾尔语口音普通话短文的语音识别研究. 东北师大学报(自然科学版). 2024(04): 72-80 . 百度学术
    2. 闫凯,宋烨,刘瑜,杨莉,张浩源. 老龄化背景下居家养老系统方言识别算法应用研究——以粤语为例. 信息与电脑(理论版). 2023(02): 120-122 . 百度学术
    3. 蒋若怡,韦永壮,王慧娇. 基于深度学习的差分神经区分器求解方法. 计算机工程与设计. 2023(06): 1629-1634 . 百度学术
    4. 赵建川,杨浩铨,徐勇,吴恋,崔忠伟. 基于对比预测编码模型的多任务学习语种识别方法. 数据采集与处理. 2022(02): 288-297 . 百度学术
    5. 万苗,任杰,马苗,曹瑞. 多任务学习在中国方言分类中的应用研究. 计算机技术与发展. 2022(04): 109-115 . 百度学术
    6. 郝焕香. 基于深度学习的方言语音识别模型构建. 自动化与仪器仪表. 2022(04): 48-51 . 百度学术
    7. 王瑶,龙华,邵玉斌,杜庆治. 可变时长的短时广播语音多语种识别. 云南大学学报(自然科学版). 2022(03): 490-496 . 百度学术
    8. 付英,刘增力,汤辉. 基于CNN-BiGRU的方言语种识别. 通信技术. 2022(06): 712-719 . 百度学术
    9. 王瑶,龙华,邵玉斌,杜庆治,王延凯. 基于CRNN混合神经网络的多语种识别. 光电子·激光. 2022(06): 620-628 . 百度学术
    10. 张允耀,黄鹤鸣,张会云. 复杂噪声环境下语音识别研究. 计算机与现代化. 2021(09): 68-74 . 百度学术
    11. 辛强伟,唐云凯. 多维度数据组合的人工智能系统性能优化分析. 数字技术与应用. 2020(10): 36-38 . 百度学术
    14. 顾佳,黄明,关岳. 高速列车牵引变流器故障诊断研究. 振动.测试与诊断. 2020(05): 997-1002+1029 . 百度学术

    其他类型引用(15)

计量
  • 文章访问数:  1185
  • HTML全文浏览量:  6
  • PDF下载量:  730
  • 被引次数: 27
出版历程
  • 发布日期:  2020-04-30

目录

    /

    返回文章
    返回