Abstract:
During the process of human learning, it is an important step to make the evaluation and feedback of the learning results objective. Usually, due to the lack of knowledge of evidence, there may exist consistency generated by the randomness in the learning results. Such rough feedback will hinder the improvement of the learning ability. Similarly, the machine learning system is a system driven by data and guided by performance measure. Due to the limitation, imbalance and noise of data, the results of machine learning also contain random consistency. However, the machine learning systems with the accuracy as the feedback index cannot discriminate the random consistency, which damages the generalization ability. In this paper, we propose the definition of the random accuracy and the pure accuracy. Further, the necessity of the elimination of random accuracy is analyzed. Then, based on the defined pure accuracy, we propose an SVM model with eliminating the random consistency, called as PASVM, and validate its efficiency on ten different benchmark data sets downloaded from KEEL. The experimental results show that the performance of the PASVM is better than that of the traditional SVM method, the SVMperf method and other methods that can optimize the pure accuracy measure.