计算机研究与发展 ›› 2021, Vol. 58 ›› Issue (11): 2416-2429.doi: 10.7544/issn1000-1239.2021.20210633
所属专题: 2021密码学与网络空间安全治理专题
刘飚1,张方佼1,王文鑫1,谢康2,张健毅1,3
Liu Biao1, Zhang Fangjiao1, Wang Wenxin1, Xie Kang2, Zhang Jianyi1,3
摘要: 联邦学习(federated learning)由于参数服务器端只收集客户端模型而不接触客户端本地数据,从而更好地保护数据隐私.然而其基础聚合算法FedAvg容易受到拜占庭客户端攻击.针对此问题,很多研究提出了不同聚合算法,但这些聚合算法存在防守能力不足、模型假设不贴合实际等问题.因此,提出一种新型的拜占庭鲁棒聚合算法.与现有聚合算法不同,该算法侧重于检测Softmax层的概率分布.具体地,参数服务器在收集客户端模型之后,通过构造的矩阵去映射模型的更新部分来获取此模型的Softmax层概率分布,排除分布异常的客户端模型.实验结果表明:在不降低FedAvg精度的前提下,在阻碍收敛攻击中,将拜占庭容忍率从40%提高到45%,在后门攻击中实现对边缘后门攻击的防守.此外,根据目前最先进的自适应攻击框架,设计出专门针对该聚合算法的自适应攻击,并进行了实验评估,实验结果显示,该聚合算法可以防御至少30%的拜占庭客户端.
中图分类号: