• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于重排序的迭代式实体对齐

曾维新, 赵翔, 唐九阳, 谭真, 王炜

曾维新, 赵翔, 唐九阳, 谭真, 王炜. 基于重排序的迭代式实体对齐[J]. 计算机研究与发展, 2020, 57(7): 1460-1471. DOI: 10.7544/issn1000-1239.2020.20190643
引用本文: 曾维新, 赵翔, 唐九阳, 谭真, 王炜. 基于重排序的迭代式实体对齐[J]. 计算机研究与发展, 2020, 57(7): 1460-1471. DOI: 10.7544/issn1000-1239.2020.20190643
Zeng Weixin, Zhao Xiang, Tang Jiuyang, Tan Zhen, Wang Wei. Iterative Entity Alignment via Re-Ranking[J]. Journal of Computer Research and Development, 2020, 57(7): 1460-1471. DOI: 10.7544/issn1000-1239.2020.20190643
Citation: Zeng Weixin, Zhao Xiang, Tang Jiuyang, Tan Zhen, Wang Wei. Iterative Entity Alignment via Re-Ranking[J]. Journal of Computer Research and Development, 2020, 57(7): 1460-1471. DOI: 10.7544/issn1000-1239.2020.20190643
曾维新, 赵翔, 唐九阳, 谭真, 王炜. 基于重排序的迭代式实体对齐[J]. 计算机研究与发展, 2020, 57(7): 1460-1471. CSTR: 32373.14.issn1000-1239.2020.20190643
引用本文: 曾维新, 赵翔, 唐九阳, 谭真, 王炜. 基于重排序的迭代式实体对齐[J]. 计算机研究与发展, 2020, 57(7): 1460-1471. CSTR: 32373.14.issn1000-1239.2020.20190643
Zeng Weixin, Zhao Xiang, Tang Jiuyang, Tan Zhen, Wang Wei. Iterative Entity Alignment via Re-Ranking[J]. Journal of Computer Research and Development, 2020, 57(7): 1460-1471. CSTR: 32373.14.issn1000-1239.2020.20190643
Citation: Zeng Weixin, Zhao Xiang, Tang Jiuyang, Tan Zhen, Wang Wei. Iterative Entity Alignment via Re-Ranking[J]. Journal of Computer Research and Development, 2020, 57(7): 1460-1471. CSTR: 32373.14.issn1000-1239.2020.20190643

基于重排序的迭代式实体对齐

基金项目: 国家自然科学基金项目(61872446,61902417,71690233,71971212);湖南省自然科学基金项目(2019JJ20024);湖南省研究生科研创新项目(CX20190033)
详细信息
  • 中图分类号: TP391

Iterative Entity Alignment via Re-Ranking

Funds: This work was supported by the National Natural Science Foundation of China (61872446, 61902417, 71690233, 71971212), the Natural Science Foundation of Hunan Province of China (2019JJ20024), and the Postgraduate Scientific Research Innovation Project of Hunan Province (CX20190033).
  • 摘要: 现有的知识图谱无法避免地存在不完整这一问题.缓解此问题的可行方法是引入外部知识图谱中的知识.在此过程中,实体对齐是最关键的步骤.当前最先进的实体对齐解决方案主要依靠知识图谱的结构信息来判断实体的等价性,但在真实世界知识图谱上,大部分实体只具有较低的节点度数以及微少的结构信息.此外,标注数据的缺乏也大大限制了实体对齐模型的效果.为解决上述问题,提出将不受节点度数影响的实体名信息与结构信息相结合,从更全面的角度实现实体对齐.在此基本框架上,利用基于课程学习的迭代训练方法从易至难地选择高置信度结果加入到训练数据中,扩增标注数据的规模.最后使用词移距离模型进一步改进实体名信息的利用方式,并对前序对齐结果重排序,提升实体对齐准确率.在跨语言以及单语言实体对齐任务上的实验结果表明,提出的实体对齐方法性能远好于当前最好的方法.
    Abstract: Existing knowledge graphs (KGs) inevitably suffer from the problem of incompleteness. One feasible approach to tackle this issue is by introducing knowledge from other KGs. During the process of knowledge integration, entity alignment (EA), which aims to find equivalent entities in different KGs, is the most crucial step, as entities are the pivots that connect heterogeneous KGs. State-of-the-art EA solutions mainly rely on KG structure information for judging the equivalence of entities, whereas most entities in real-life KGs are in low degrees and contain limited structural information. Additionally, the lack of supervision signals also constrains the effectiveness of EA models. In order to tackle aforementioned issues, we propose to combine entity name information, which is not affected by entity degree, with structural information, to convey more comprehensive signals for aligning entities. Upon this basic EA framework, we further devise a curriculum learning based iterative training strategy to increase the scale of labelled data with confident EA pairs selected from the results of each round. Moreover, we exploit word mover’s distance model to optimize the utilization of entity name information and re-rank alignment results, which in turn boosts the accuracy of EA. We evaluate our proposal on both cross-lingual and mono-lingual EA tasks against strong existing methods, and the experimental results reveal that our solution outperforms the state-of-the-arts by a large margin.
  • 期刊类型引用(14)

    1. 胡磊,甘胜丰. 基于YOLO-CIRCLE算法的圆形钢卷检测. 湖北第二师范学院学报. 2023(02): 18-25 . 百度学术
    2. 张晓辉,何金海,兰鹏燕,徐圣斯. 局部几何与全局结构联合感知的三维形状分类方法. 计算机应用研究. 2023(12): 3828-3833 . 百度学术
    3. 张晓媛,于洋,王新蕊. 三维图像虚拟视点生成优化研究仿真. 计算机仿真. 2022(03): 205-209 . 百度学术
    4. 张艳丽,牛任恺,张鑫磊,孙志杰,王利赛. 基于序列标注的业务异常工单判别方法研究. 电子设计工程. 2022(07): 139-143 . 百度学术
    5. 吴康楠,姜洪庆. 面向绿色化改造的历史民居建筑三维重构方法. 工业加热. 2022(05): 27-30+40 . 百度学术
    6. 连远锋,裴守爽,胡伟. 融合NFFD与图卷积的单视图三维物体重建. 光学精密工程. 2022(10): 1189-1202 . 百度学术
    7. 李远松,丁津津,徐晨,高博,汤汉松,单荣荣. 基于智能感知与深度学习的智能变电站设备状态检测方法. 电气工程学报. 2022(02): 208-214 . 百度学术
    8. 郭艺辉,陆寄远,黄承慧,钟雪灵,林淑金,苏卓,罗笑南. 基于混合频谱信号编码的网格纹理平滑. 计算机学报. 2021(02): 318-333 . 百度学术
    9. 谢昊洋,钟跃崎. 基于图卷积网络的非参数化三维人体重建. 毛纺科技. 2021(04): 18-24 . 百度学术
    10. 李海生,武玉娟,郑艳萍,吴晓群,蔡强,杜军平. 基于深度学习的三维数据分析理解方法研究综述. 计算机学报. 2020(01): 41-63 . 百度学术
    11. 曲海成,田小容,刘腊梅,石翠萍. 多尺度显著区域检测图像压缩. 中国图象图形学报. 2020(01): 31-42 . 百度学术
    12. 杨晓文,尹洪红,韩燮,刘佳鸣. 基于蚁狮优化的极限学习机的网格分割方法. 激光与光电子学进展. 2020(04): 163-169 . 百度学术
    13. 崔金栋,陈思远. 融媒体信息推荐模型构建与信息推荐方法研究. 情报科学. 2020(07): 52-58 . 百度学术
    14. 周燕,曾凡智,吴臣,罗粤,刘紫琴. 基于深度学习的三维形状特征提取方法. 计算机科学. 2019(09): 47-58 . 百度学术

    其他类型引用(20)

计量
  • 文章访问数:  1132
  • HTML全文浏览量:  3
  • PDF下载量:  366
  • 被引次数: 34
出版历程
  • 发布日期:  2020-06-30

目录

    /

    返回文章
    返回