• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

频域二元纯相位编码压缩成像

张成, 张芬, 沈川, 章权兵, 韦穗, 王岳

张成, 张芬, 沈川, 章权兵, 韦穗, 王岳. 频域二元纯相位编码压缩成像[J]. 计算机研究与发展, 2014, 51(9): 2070-2080. DOI: 10.7544/issn1000-1239.2014.20130304
引用本文: 张成, 张芬, 沈川, 章权兵, 韦穗, 王岳. 频域二元纯相位编码压缩成像[J]. 计算机研究与发展, 2014, 51(9): 2070-2080. DOI: 10.7544/issn1000-1239.2014.20130304
Zhang Cheng, Zhang Fen, Shen Chuan, Zhang Quanbing, Wei Sui, Wang Yue. Binary Pure Phase Encoding Compressive Imaging in Frequency Domain[J]. Journal of Computer Research and Development, 2014, 51(9): 2070-2080. DOI: 10.7544/issn1000-1239.2014.20130304
Citation: Zhang Cheng, Zhang Fen, Shen Chuan, Zhang Quanbing, Wei Sui, Wang Yue. Binary Pure Phase Encoding Compressive Imaging in Frequency Domain[J]. Journal of Computer Research and Development, 2014, 51(9): 2070-2080. DOI: 10.7544/issn1000-1239.2014.20130304
张成, 张芬, 沈川, 章权兵, 韦穗, 王岳. 频域二元纯相位编码压缩成像[J]. 计算机研究与发展, 2014, 51(9): 2070-2080. CSTR: 32373.14.issn1000-1239.2014.20130304
引用本文: 张成, 张芬, 沈川, 章权兵, 韦穗, 王岳. 频域二元纯相位编码压缩成像[J]. 计算机研究与发展, 2014, 51(9): 2070-2080. CSTR: 32373.14.issn1000-1239.2014.20130304
Zhang Cheng, Zhang Fen, Shen Chuan, Zhang Quanbing, Wei Sui, Wang Yue. Binary Pure Phase Encoding Compressive Imaging in Frequency Domain[J]. Journal of Computer Research and Development, 2014, 51(9): 2070-2080. CSTR: 32373.14.issn1000-1239.2014.20130304
Citation: Zhang Cheng, Zhang Fen, Shen Chuan, Zhang Quanbing, Wei Sui, Wang Yue. Binary Pure Phase Encoding Compressive Imaging in Frequency Domain[J]. Journal of Computer Research and Development, 2014, 51(9): 2070-2080. CSTR: 32373.14.issn1000-1239.2014.20130304

频域二元纯相位编码压缩成像

Binary Pure Phase Encoding Compressive Imaging in Frequency Domain

  • 摘要: 基金项目:NSFC-广东联合基金项目(U1201255);国家自然科学基金项目(61201396,61201227,61301296,61377006);高等学校博士学科点专项科研基金项目(20113401130001);安徽省自然科学基金项目(1208085QF114);安徽大学博士科研启动经费项目(33190218);安徽大学青年基金项目(KJQN1120)
    Abstract: Super resolution (SR) is considered as one of the “holy grails” of optical imaging and image processing. The introduction of compressive sensing theory presents a novel super-resolution reconstruction method from a single low-resolution image, which can avoid the requirements for the multiple sub-pixel images of traditional superresolution method. Analyzing the requirements of the similarities and differences between compressed sensing measurement matrices and optical imaging systems, a binary phase encoding compressive imaging method based on the 4-f optical architecture is presented, with the phase in the frequency domain randomly modulated, which can achieve super-resolution reconstruction from single low-resolution measurement images obtained with single exposure conditions, no other additional information collected. Binary phase mask is much easier to implement than random phase mask with uniform distribution, which is a more viable scheme for physical realization of compressive imaging. Simulation experiments demonstrate that the proposed method can effectively capture compressive measurements and implement super-resolution reconstruction in a single shot condition. Furthermore, another experiments show that this method is also more applicable to large-scale image reconstruction compared with random demodulation (RD) proposed by Romberg in the reconstruction time, and more practical in the sampling scheme than RecPC method proposed by Yin.
计量
  • 文章访问数:  947
  • HTML全文浏览量:  2
  • PDF下载量:  582
  • 被引次数: 0
出版历程
  • 发布日期:  2014-08-31

目录

    /

    返回文章
    返回