高级检索

    多社区网络上的命名博弈

    Naming Game on Multi-Community Network

    • 摘要: 为了模仿人类对新物体认知和命名的过程,提出了一种新型的命名博弈模型,它通过词汇的权重表示个体的认知程度,低权重词汇被删除模拟个体有限记忆的过程.实验发现,在单社区网络上,所有个体的词汇最终能够统一,通过总词汇数、不同词汇数和平均协议成功率的分析解释了新个体命名的演化过程.衰减因子和删除阈值的取值对于演化速度影响较大,当它们之间存在线性关系时演化收敛较快.通过将该模型应用到多社区网络模型上,发现收敛词汇数可能不唯一,会与社区数相同,且收敛词汇数的稳定性与网络社区化强度和社区内节点的平均度有关,而与社区内节点数无关.最后,使用微分动力学的方法对这种情况进行了定量分析.

       

      Abstract: We propose a new naming game model to imitate the process of human cognizing and naming a new object. Agents cognize an object through different name weights of its various words. The increase and decrease of names weight express that the name memory is enhanced and forgotten in human brain. Deleting names with low weights explains limited memory. On single-community playing our naming game, evolution can converge to global consensus asymptotically. The process of naming a new object is explained qualitatively by analyzing the number of total names, the number of different names and the average success rate. Optimal values of the deleting threshold and attenuation parameter induce the fastest convergence of the population, but very strong influences inhibit the convergence process. There exists a linear relationship between the two parameters to favor the rapid convergence. This paper also proposes a multi-community network model, which is composed of several communities, to simulate the evolution of different languages in various countries. Gaming on multi-community network model, the number of convergence names may be same as the number of communities. The stability of convergence names is related to the strength of communities and average degree, not related to the size of community. Stability analysis of differential equations is used to explain numerical computation. The agents in community hold a name and agents among communities hold several names, which are similar to multilingual and they can communicate with each other among communities.

       

    /

    返回文章
    返回