A Survey on Algorithms for Protein Contact Prediction
-
摘要: 蛋白质是由多个氨基酸残基顺序连接而成的长链.在天然状态下,蛋白质并不是无规则的自由状态,而是自发形成特定的空间结构,以执行其特定的生物学功能.驱动蛋白质形成特定空间结构的主要因素是残基间的非共价相互作用,包括疏水作用、静电相互作用、范德华力等.因此,对残基之间远程相互作用的准确预测将有助于对蛋白质空间结构的预测,进而有助于对蛋白质生物学功能的了解.在蛋白质进化过程,有相互作用残基对之间存在一种“共进化”模式,即当一个残基发生变异时,与其有相互作用的残基也要发生相应的变异,以维持相互作用,进而维持整体空间结构以及生物学功能.基于上述生物学观察,研究者开发了多个统计模型和算法以预测残基对之间的相互作用:1)概述残基之间远程相互作用的两大类基本预测算法,包括无监督学习方法和监督学习方法;2)使用蛋白质结构预测CASP比赛结果来客观比较上述各类算法的性能,分析各个算法的特点和优势;3)从生物学观察和统计模型2个角度分析总结了未来的发展趋势.
-
关键词:
- 残基远程相互作用预测 /
- 蛋白质三级结构预测 /
- 图模型 /
- 共进化 /
- 机器学习
Abstract: Proteins are large molecules consisting of a linear sequence of amino acids. In the natural environment, a protein spontaneously folds into specific tertiary structure to perform its biological functionality. The main factors that drive proteins to fold are interactions between residues, including hydrophobic interaction, Van der Waals’ force and electrostatic interactions. The interactions between residues usually lead to residue-residue contacts, and the prediction of residue-residue contacts should greatly facilitate understanding of protein structures and functionalities. A great variety of techniques have been proposed for residue-residue contacts prediction, including machine learning, statistical models, and linear programing. It should be pointed out that most of these techniques are based on the biological insight of co-evolution, i.e., during the evolutionary history of proteins, a residue’s mutation usually leads its contacting partner to mutate accordingly. In this review, we summarize the state-of-art algorithms in this field with emphasis on the construction of statistical models based on biological insights. We also present the evaluation of these algorithms using CASP (critical assessment of techniques for protein structure prediction) targets as well as popular benchmark datasets, and describe the trends in the field of protein contact prediction. -
-
期刊类型引用(7)
1. 黄玲,黄镇伟,黄梓源,关灿荣,高月芳,王昌栋. 图卷积宽度跨域推荐系统. 计算机研究与发展. 2024(07): 1713-1729 . 本站查看
2. 杨玲玲. 基于HM与LWR算法的电子设备MCS推荐优化. 山西电子技术. 2024(04): 22-24 . 百度学术
3. 郑升旻,付晓东. 利用混合Plackett-Luce模型的不完整序数偏好预测. 计算机应用. 2024(10): 3105-3113 . 百度学术
4. 杜兆芳. 基于协同排序学习算法的移动群智感知任务推荐. 电子产品世界. 2023(09): 64-66+70 . 百度学术
5. 朱丽丽. 随机森林算法下列表级排序学习推荐系统设计. 淮阴工学院学报. 2023(05): 62-68 . 百度学术
6. 曹玉红,赵乙,陈佳桦. 兼容异构数据的稳定评估模型. 小型微型计算机系统. 2021(09): 2011-2016 . 百度学术
7. 林子楠,刘杜钢,潘微科,明仲. 面向推荐系统中有偏和无偏一元反馈建模的三任务变分自编码器. 信息安全学报. 2021(05): 110-127 . 百度学术
其他类型引用(4)
计量
- 文章访问数: 1922
- HTML全文浏览量: 2
- PDF下载量: 1100
- 被引次数: 11