Resource Deployment with Prediction and Task Scheduling Optimization in Edge Cloud Collaborative Computing
-
摘要: 数据集中处理的云计算模式提供交互迅速、绿色高效的多样化应用服务面临新挑战.将云计算能力扩展到边缘设备,提出了边云协同计算框架;设计了基于任务预测的资源部署算法,在云服务中心通过二维时间序列对任务进行预测,结合分类聚合、延迟阈值判定等优化边缘服务器任务运行所需资源部署;提出了基于帕累托优化的任务调度算法,在边缘服务器分2个阶段进行帕累托渐进比较得到用户服务质量和系统服务效应2个目标曲线的相切点或任一相交点以优化任务调度.实验结果表明:结合基于任务预测的资源部署算法与基于帕累托优化的任务调度算法在提高平均用户任务命中率基础上,其用户平均服务完成时间、系统整体服务效应度、总任务延迟率在不同用户任务规模、不同Zipf分布参数α的应用场景下,均优于基于帕累托优化的任务调度算法和基于FIFO(first input first output)的基准任务调度算法.Abstract: The cloud computing model of data centralized processing is facing new challenges for providing diversified application services with rapid interaction and green efficiency. In this paper, the cloud computing capability is extended to the edge devices, and an edge cloud collaborative computing framework is proposed. A resource deployment algorithm based on task prediction (RDTP) is designed. The tasks are predicted by two-dimensional time series in cloud service center, and the task resource deployment of edge server is optimized by classification aggregation and delay threshold determination. A task scheduling algorithm based on Pareto improvement (TSPI) is proposed. At the edge servers, the Pareto progressive comparison is conducted in two stages to obtain the tangent point or any intersection point of the two objective curves of quality of user service and effect of system service to optimize task scheduling. The experimental results show that combining the resource deployment algorithm based on task prediction and the task scheduling algorithm based on Pareto improvement (RDTP-TSPI) increases the average user task hit rate. In addition, in the application scenarios of varying user task scales and different Zipf distribution parameters α, the average service completion time of users, the overall service effectiveness of system, and the total task delay rate of RDTP-TSPI are better than the TSPI and BA (benchmark task scheduling algorithm based on FIFO).
-
Keywords:
- task scheduling /
- resource deployment /
- task prediction /
- collaborative computing /
- edge computing
-
-
期刊类型引用(20)
1. 马行坡,闫梦凡,闵洁,殷明. 一种基于“云-边”协同计算的新安全联邦学习方案. 信阳师范大学学报(自然科学版). 2025(01): 66-71 . 百度学术
2. 白静,许建军,张龙昌. 随机供需云环境中应用提供商收益驱动的最优资源协同配置策略. 信息系统学报. 2025(01): 105-127 . 百度学术
3. 何涵,刘鹏,赵亮,王青山. 无人机任务卸载与充电协同优化. 工程科学与技术. 2024(01): 99-109 . 百度学术
4. 朱思峰,蔡江昊,柴争义,孙恩林. 车联网边缘场景下基于免疫算法的计算卸载优化. 吉林大学学报(工学版). 2024(01): 221-231 . 百度学术
5. 陈晶腾,陈芳. 分布式新能源接入的配电网降损技术研究. 自动化与仪器仪表. 2024(06): 291-295 . 百度学术
6. 白静,张龙昌. 云应用提供商收益驱动的最佳云资源配置策略. 计算机集成制造系统. 2024(07): 2495-2505 . 百度学术
7. 冯起,薛喜红,任龙,冯英. 考虑云端距离的科技服务边缘计算资源均衡调度算法. 自动化技术与应用. 2024(08): 95-98+104 . 百度学术
8. 纪雯,杨哲铭,王智,郭斌,沈博. 视觉端边云融合架构:面向超级智慧城市群演进的关键技术. 中国科学:信息科学. 2024(11): 2518-2532 . 百度学术
9. 赵璞,肖人彬. 基于自组织劳动分工的边云协同任务调度与资源缓存算法. 控制与决策. 2023(05): 1352-1362 . 百度学术
10. 唐续豪,刘发贵,王彬,李超,蒋俊,唐泉,陈维明,何凤文. 跨云环境下任务调度综述. 计算机研究与发展. 2023(06): 1262-1275 . 本站查看
11. 原静,孙骏. 基于边缘计算的智能电网数据调度与快速分发方法. 信息与电脑(理论版). 2023(06): 226-229 . 百度学术
12. 刘鲤君,丁红,祁鸿燕,杜丽华,孙艳丽,姜宁. PaaS架构后端管理平台的云边协同调度算法设计. 现代电子技术. 2023(16): 91-96 . 百度学术
13. 徐胜超. 基于混合蛙跳算法的容器云资源低能耗部署方法. 重庆邮电大学学报(自然科学版). 2023(05): 952-959 . 百度学术
14. 何卫刚,王晓敏. 多技术辅助的高可靠矿井通信网络框架. 陕西煤炭. 2023(06): 150-153 . 百度学术
15. 蒋伟进,孙永霞,朱昊冉,陈萍萍,张婉清,陈君鹏. 边云协同计算下基于ST-GCN的监控视频行为识别机制. 南京大学学报(自然科学). 2022(01): 163-174 . 百度学术
16. 周伟,谢志强. 考虑多工序设备权重的资源协同综合调度算法. 电子与信息学报. 2022(05): 1625-1635 . 百度学术
17. 李凌,陈曦,沈维捷,熊汉武,蔡冉冉. 面向电工装备智能监造的边缘缓存策略. 计算机与现代化. 2022(05): 61-67 . 百度学术
18. 关天柱. 基于随机优化的边缘网络任务资源协同传输调度机制. 长江信息通信. 2022(06): 59-61 . 百度学术
19. 邓勇琛,胡忠波,王素贞. 边缘计算环境下的任务调度综述. 河北省科学院学报. 2022(04): 1-7 . 百度学术
20. 王其朝,金光淑,李庆,王锴,杨祖业,王宏. 工业边缘计算研究现状与展望. 信息与控制. 2021(03): 257-274 . 百度学术
其他类型引用(28)
计量
- 文章访问数: 840
- HTML全文浏览量: 9
- PDF下载量: 528
- 被引次数: 48