• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

社交网络信息传播预测与特定信息抑制

曹玖新, 高庆清, 夏蓉清, 刘伟佳, 朱雪林, 刘波

曹玖新, 高庆清, 夏蓉清, 刘伟佳, 朱雪林, 刘波. 社交网络信息传播预测与特定信息抑制[J]. 计算机研究与发展, 2021, 58(7): 1490-1503. DOI: 10.7544/issn1000-1239.2021.20200809
引用本文: 曹玖新, 高庆清, 夏蓉清, 刘伟佳, 朱雪林, 刘波. 社交网络信息传播预测与特定信息抑制[J]. 计算机研究与发展, 2021, 58(7): 1490-1503. DOI: 10.7544/issn1000-1239.2021.20200809
Cao Jiuxin, Gao Qingqing, Xia Rongqing, Liu Weijia, Zhu Xuelin, Liu Bo. Information Propagation Prediction and Specific Information Suppression in Social Networks[J]. Journal of Computer Research and Development, 2021, 58(7): 1490-1503. DOI: 10.7544/issn1000-1239.2021.20200809
Citation: Cao Jiuxin, Gao Qingqing, Xia Rongqing, Liu Weijia, Zhu Xuelin, Liu Bo. Information Propagation Prediction and Specific Information Suppression in Social Networks[J]. Journal of Computer Research and Development, 2021, 58(7): 1490-1503. DOI: 10.7544/issn1000-1239.2021.20200809
曹玖新, 高庆清, 夏蓉清, 刘伟佳, 朱雪林, 刘波. 社交网络信息传播预测与特定信息抑制[J]. 计算机研究与发展, 2021, 58(7): 1490-1503. CSTR: 32373.14.issn1000-1239.2021.20200809
引用本文: 曹玖新, 高庆清, 夏蓉清, 刘伟佳, 朱雪林, 刘波. 社交网络信息传播预测与特定信息抑制[J]. 计算机研究与发展, 2021, 58(7): 1490-1503. CSTR: 32373.14.issn1000-1239.2021.20200809
Cao Jiuxin, Gao Qingqing, Xia Rongqing, Liu Weijia, Zhu Xuelin, Liu Bo. Information Propagation Prediction and Specific Information Suppression in Social Networks[J]. Journal of Computer Research and Development, 2021, 58(7): 1490-1503. CSTR: 32373.14.issn1000-1239.2021.20200809
Citation: Cao Jiuxin, Gao Qingqing, Xia Rongqing, Liu Weijia, Zhu Xuelin, Liu Bo. Information Propagation Prediction and Specific Information Suppression in Social Networks[J]. Journal of Computer Research and Development, 2021, 58(7): 1490-1503. CSTR: 32373.14.issn1000-1239.2021.20200809

社交网络信息传播预测与特定信息抑制

基金项目: 国家自然科学基金项目(61772133, 61972087);国家社会科学基金项目(19@ZH014);江苏省重点研发计划项目(BE2018706);江苏省自然科学基金项目(SBK2019022870) ;江苏省计算机网络技术重点实验室;江苏省网络与信息安全重点实验室(BM2003201);计算机网络和信息集成教育部重点实验室(93K-9)
详细信息
  • 中图分类号: TP391

Information Propagation Prediction and Specific Information Suppression in Social Networks

Funds: This work was supported by the National Natural Science Foundation of China (61772133, 61972087), the National Social Science Foundation of China (19@ZH014), the Jiangsu Key Research and Development Program (BE2018706), the Natural Science Foundation of Jiangsu Province (SBK2019022870), the Jiangsu Key Laboratory of Computer Networking Technology, the Jiangsu Provincial Key Laboratory of Network and Information Security (BM2003201), and the Key Laboratory of Computer Network and Information Integration of Ministry of Education of China (93K-9).
  • 摘要: 近年来,随着Twitter、Facebook、新浪微博等社交网站用户数量的激增,信息数量急剧膨胀,隐藏在海量信息中的不实信息的传播带来了不良的影响,如何调控或抑制特定信息的传播是网络信息管理面临的一项技术挑战.为了解决这一问题,首先从真实微博网络出发,基于机器学习方法提出了不依赖于传播模型的独立信息转发预测机制,从而对信息的传播进行预测;其次,基于独立级联模型,综合考虑本文场景的特殊性,提出了异步信息不平等竞争传播模型作为特定信息与免疫信息的竞争传播机制;最后,提出了3个种子节点集合选择算法,通过向选择的种子节点注入免疫信息使得免疫信息在网络中广泛传播从而抑制特定信息的传播.基于真实社交网站数据的实验证明,提出的信息传播预测模型以及种子节点选取算法对特定信息传播的调控和抑制具有良好的效果.
    Abstract: In recent years, with the increasing number of users in social networks such as Twitter, Facebook and Sina Weibo, the amount of information has rapidly expanded. The spread of untrue information hidden in massive information has brought adverse effects. How to regulate or suppress the spread of specific information is a technical challenge faced by network information management. In order to solve this problem, first of all, the independent information forwarding prediction mechanism based on machine learning method, which does not depend on the propagation model is proposed, so as to predict the information propagation. Secondly, based on the independent cascade model, considering the particularity of the scenario in this paper, the asynchronous information unequal competition propagation model is proposed as the competitive propagation mechanism of specific information and immune information. Finally, three selection algorithms of seed nodes are proposed and the immune information is widely spread in the network by injecting immune information into the seed nodes, so as to suppress the spread of specific information. Experiments based on real social network data show that the information propagation prediction model and the selection algorithms of seed nodes proposed have good effects on the regulation and suppression of specific information propagation.
  • 期刊类型引用(17)

    1. 袁子淇,孙庆赟,周号益,朱祖坤,李建欣. MNDetector:基于多层网络的异常访问检测方法. 计算机研究与发展. 2025(03): 765-778 . 本站查看
    2. 陈佳乐,陈旭,景永俊,王叔洋. 图神经网络在异常检测中的应用综述. 计算机工程与应用. 2024(13): 51-65 . 百度学术
    3. 林馥,李明康,罗学雄,张书豪,张越,王梓桐. 基于异常感知的变分图自编码器的图级异常检测算法. 计算机研究与发展. 2024(08): 1968-1981 . 本站查看
    4. 孔翎超,刘国柱. 离群点检测算法综述. 计算机科学. 2024(08): 20-33 . 百度学术
    5. 王泽鹏 ,马超 ,张壮壮 ,吴黎兵 ,石小川 . 动态决策驱动的工控网络数据要素威胁检测方法. 计算机研究与发展. 2024(10): 2404-2416 . 本站查看
    6. 叶苗,程锦,黄源,蒋秋香,王勇. 面向WSN异常节点检测的融合重构机制与对比学习方法. 通信学报. 2024(09): 153-169 . 百度学术
    7. 王芳. 基于深度学习的网络传输数据异常识别方法. 现代电子技术. 2023(06): 62-66 . 百度学术
    8. 江铃燚,郑艺峰,陈澈,李国和,张文杰. 有监督深度学习的优化方法研究综述. 中国图象图形学报. 2023(04): 963-983 . 百度学术
    9. 富坤,刘赢华,郝玉涵,孙明磊. 基于图模块度聚类的异常检测算法. 计算机应用研究. 2023(06): 1721-1727 . 百度学术
    10. 曹成顺. 基于深度神经网络的输电线路异常自动辨识方法. 信息与电脑(理论版). 2023(15): 165-167 . 百度学术
    11. 冯健,赵宇鹏,刘天. 融合双重自监督信号的图异常检测. 科学技术与工程. 2023(35): 15142-15147 . 百度学术
    12. 王炳泉. 基于SVM的网络流量异常检测算法. 信息与电脑(理论版). 2023(22): 245-247 . 百度学术
    13. 唐立,郝鹏,任沛阁,张祖耀,何翔,张学军. 基于改进孤立森林算法的无人机异常行为检测. 航空学报. 2022(08): 584-593 . 百度学术
    14. 陈益芳,宣羿,樊立波,孙智卿,屠永伟,张亦涵,蔡乾晨. 基于机器学习的电网威胁检测算法模型和大数据平台设计. 电力大数据. 2022(04): 34-41 . 百度学术
    15. 刘华玲,刘雅欣,许珺怡,陈尚辉,乔梁. 图异常检测在金融反欺诈中的应用研究进展. 计算机工程与应用. 2022(22): 41-53 . 百度学术
    16. 李净. 国际视野下治理虚假新闻的技术手段及相关模型. 中国传媒科技. 2021(08): 17-21 . 百度学术
    17. 雷瑜,郑丹,曾繁如,樊志伟,宁黎,邓立. 四川耕地“非粮化”监测中的智能监测方法. 资源与人居环境. 2021(12): 47-51 . 百度学术

    其他类型引用(34)

计量
  • 文章访问数:  602
  • HTML全文浏览量:  7
  • PDF下载量:  471
  • 被引次数: 51
出版历程
  • 发布日期:  2021-06-30

目录

    /

    返回文章
    返回