• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

边缘计算可信协同服务策略建模

乐光学, 戴亚盛, 杨晓慧, 刘建华, 游真旭, 朱友康

乐光学, 戴亚盛, 杨晓慧, 刘建华, 游真旭, 朱友康. 边缘计算可信协同服务策略建模[J]. 计算机研究与发展, 2020, 57(5): 1080-1102. DOI: 10.7544/issn1000-1239.2020.20190077
引用本文: 乐光学, 戴亚盛, 杨晓慧, 刘建华, 游真旭, 朱友康. 边缘计算可信协同服务策略建模[J]. 计算机研究与发展, 2020, 57(5): 1080-1102. DOI: 10.7544/issn1000-1239.2020.20190077
Yue Guangxue, Dai Yasheng, Yang Xiaohui, Liu Jianhua, You Zhenxu, Zhu Youkang. Model of Trusted Cooperative Service for Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(5): 1080-1102. DOI: 10.7544/issn1000-1239.2020.20190077
Citation: Yue Guangxue, Dai Yasheng, Yang Xiaohui, Liu Jianhua, You Zhenxu, Zhu Youkang. Model of Trusted Cooperative Service for Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(5): 1080-1102. DOI: 10.7544/issn1000-1239.2020.20190077
乐光学, 戴亚盛, 杨晓慧, 刘建华, 游真旭, 朱友康. 边缘计算可信协同服务策略建模[J]. 计算机研究与发展, 2020, 57(5): 1080-1102. CSTR: 32373.14.issn1000-1239.2020.20190077
引用本文: 乐光学, 戴亚盛, 杨晓慧, 刘建华, 游真旭, 朱友康. 边缘计算可信协同服务策略建模[J]. 计算机研究与发展, 2020, 57(5): 1080-1102. CSTR: 32373.14.issn1000-1239.2020.20190077
Yue Guangxue, Dai Yasheng, Yang Xiaohui, Liu Jianhua, You Zhenxu, Zhu Youkang. Model of Trusted Cooperative Service for Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(5): 1080-1102. CSTR: 32373.14.issn1000-1239.2020.20190077
Citation: Yue Guangxue, Dai Yasheng, Yang Xiaohui, Liu Jianhua, You Zhenxu, Zhu Youkang. Model of Trusted Cooperative Service for Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(5): 1080-1102. CSTR: 32373.14.issn1000-1239.2020.20190077

边缘计算可信协同服务策略建模

基金项目: 国家自然科学基金项目(61572014)
详细信息
  • 中图分类号: TP393

Model of Trusted Cooperative Service for Edge Computing

Funds: This work was supported by the National Natural Science Foundation of China (61572014).
  • 摘要: 随着物联网、4G/5G无线网络技术的发展和普及应用,万物互联已成为现实.移动计算、智能手机、Pad和可穿戴等智能终端设备大量接入使网络边缘设备数量迅速增加,边缘设备所产生的数据呈指数增长.边缘计算面临大吞吐量、频繁交互、位置和延迟敏感等特征的实时业务服务需求挑战.充分发挥边缘计算节点智能、多样和灵活等特点,通过局部汇聚计算、存储、网络服务等共享方式实现边缘计算资源快速融合,构建可信协同服务系统是保障边缘计算QoS的一种有效方法.为了快速发现、动态组织、自主融合边缘节点进行协同服务,提出一种基于盟主的边缘计算协同服务(trust cooperative services for edge computing, TCSEC)模型.该模型基于信任度、影响力、容量、带宽、链路质量等表征节点特征属性,以任务驱动方式,由盟主节点根据策略和边缘节点的特征属性选择协同服务节点集,实现资源快速融合与计算迁移,为计算请求节点提供及时响应和可靠服务.仿真实验表明:TCSEC能有效提高边缘计算协同服务能力和服务质量.
    Abstract: With the development and widespread application of the Internet of things and 4G/5G wireless network technology, we have entered into the Internet of everything era. It is easier to connect the edge computing devices, such as mobile phones, PAD, etc., to the Internet. Thus, the number of data generated by edge computing devices is increasing significantly. However, the current network services cannot provide such demand, posed by edge computing, on high throughput, frequently connection, sensitive to location and latency. It is an efficient way to improve the quality of service by 1)considering the characteristics of the intelligence, diversity and flexibility of node at the edge of network, 2)locally aggregating computing, storage and network service resources, and 3)adaptively building trusted cooperative service system. The key to efficiently build a cooperative service system is quickly looking for and then dynamically organizing the edge computing nodes. In this paper, we propose a leaderbased trusted cooperative service for edge computing (TCSEC). The main idea is the leader node selects its cooperative service node set with a selfadjustable clustering, which takes into consideration the features of a node, e.g. trust degree, influence, volume, bandwidth, and quality of the link, and realizes the rapid resource aggregation and computing migration. Based on our approach, it is fast to respond to the computing request and provide reliable service. The simulation shows TCSEC can efficiently speed up the ability to construct a cooperative service system and improve the quality of service.
  • 期刊类型引用(7)

    1. 张淑芬,张宏扬,任志强,陈学斌. 联邦学习的公平性综述. 计算机应用. 2025(01): 1-14 . 百度学术
    2. 朱智韬,司世景,王健宗,程宁,孔令炜,黄章成,肖京. 联邦学习的公平性研究综述. 大数据. 2024(01): 62-85 . 百度学术
    3. 李锦辉,吴毓峰,余涛,潘振宁. 数据孤岛下基于联邦学习的用户电价响应刻画及其应用. 电力系统保护与控制. 2024(06): 164-176 . 百度学术
    4. 刘新,刘冬兰,付婷,王勇,常英贤,姚洪磊,罗昕,王睿,张昊. 基于联邦学习的时间序列预测算法. 山东大学学报(工学版). 2024(03): 55-63 . 百度学术
    5. 赵泽华,梁美玉,薛哲,李昂,张珉. 基于数据质量评估的高效强化联邦学习节点动态采样优化. 智能系统学报. 2024(06): 1552-1561 . 百度学术
    6. 杨秀清,彭长根,刘海,丁红发,汤寒林. 基于数据质量评估的公平联邦学习方案. 计算机与数字工程. 2022(06): 1278-1285 . 百度学术
    7. 黎志鹏. 高可靠的联邦学习在图神经网络上的聚合方法. 工业控制计算机. 2022(10): 85-87+90 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  1136
  • HTML全文浏览量:  3
  • PDF下载量:  344
  • 被引次数: 17
出版历程
  • 发布日期:  2020-04-30

目录

    /

    返回文章
    返回