• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于KNN离群点检测和随机森林的多层入侵检测方法

任家东, 刘新倩, 王倩, 何海涛, 赵小林

任家东, 刘新倩, 王倩, 何海涛, 赵小林. 基于KNN离群点检测和随机森林的多层入侵检测方法[J]. 计算机研究与发展, 2019, 56(3): 566-575. DOI: 10.7544/issn1000-1239.2019.20180063
引用本文: 任家东, 刘新倩, 王倩, 何海涛, 赵小林. 基于KNN离群点检测和随机森林的多层入侵检测方法[J]. 计算机研究与发展, 2019, 56(3): 566-575. DOI: 10.7544/issn1000-1239.2019.20180063
Ren Jiadong, Liu Xinqian, Wang Qian, He Haitao, Zhao Xiaolin. An Multi-Level Intrusion Detection Method Based on KNN Outlier Detection and Random Forests[J]. Journal of Computer Research and Development, 2019, 56(3): 566-575. DOI: 10.7544/issn1000-1239.2019.20180063
Citation: Ren Jiadong, Liu Xinqian, Wang Qian, He Haitao, Zhao Xiaolin. An Multi-Level Intrusion Detection Method Based on KNN Outlier Detection and Random Forests[J]. Journal of Computer Research and Development, 2019, 56(3): 566-575. DOI: 10.7544/issn1000-1239.2019.20180063
任家东, 刘新倩, 王倩, 何海涛, 赵小林. 基于KNN离群点检测和随机森林的多层入侵检测方法[J]. 计算机研究与发展, 2019, 56(3): 566-575. CSTR: 32373.14.issn1000-1239.2019.20180063
引用本文: 任家东, 刘新倩, 王倩, 何海涛, 赵小林. 基于KNN离群点检测和随机森林的多层入侵检测方法[J]. 计算机研究与发展, 2019, 56(3): 566-575. CSTR: 32373.14.issn1000-1239.2019.20180063
Ren Jiadong, Liu Xinqian, Wang Qian, He Haitao, Zhao Xiaolin. An Multi-Level Intrusion Detection Method Based on KNN Outlier Detection and Random Forests[J]. Journal of Computer Research and Development, 2019, 56(3): 566-575. CSTR: 32373.14.issn1000-1239.2019.20180063
Citation: Ren Jiadong, Liu Xinqian, Wang Qian, He Haitao, Zhao Xiaolin. An Multi-Level Intrusion Detection Method Based on KNN Outlier Detection and Random Forests[J]. Journal of Computer Research and Development, 2019, 56(3): 566-575. CSTR: 32373.14.issn1000-1239.2019.20180063

基于KNN离群点检测和随机森林的多层入侵检测方法

基金项目: 国家重点研发计划基金项目(2016YFB0800700);国家自然科学基金项目(61472341,61772449,61572420);河北省自然科学基金项目(F2016203330, F2015203326);燕山大学博士后科研择优资助项目(B2017003005);燕山大学博士基金项目(B1036)
详细信息
  • 中图分类号: TP393.08

An Multi-Level Intrusion Detection Method Based on KNN Outlier Detection and Random Forests

  • 摘要: 入侵检测系统能够有效地检测网络中异常的攻击行为,对网络安全至关重要.目前,许多入侵检测方法对攻击行为Probe(probing),U2R(user to root),R2L(remote to local)的检测率比较低.基于这一问题,提出一种新的混合多层次入侵检测模型,检测正常和异常的网络行为.该模型首先应用KNN(K nearest neighbors)离群点检测算法来检测并删除离群数据,从而得到一个小规模和高质量的训练数据集;接下来,结合网络流量的相似性,提出一种类别检测划分方法,该方法避免了异常行为在检测过程中的相互干扰,尤其是对小流量攻击行为的检测;结合这种划分方法,构建多层次的随机森林模型来检测网络异常行为,提高了网络攻击行为的检测效果.流行的数据集KDD(knowledge discovery and data mining) Cup 1999被用来评估所提出的模型.通过与其他算法进行对比,该方法的准确率和检测率要明显优于其他算法,并且能有效地检测Probe,U2R,R2L这3种攻击类型.
    Abstract: Intrusion detection system can efficiently detect attack behaviors, which will do great damage for network security. Currently many intrusion detection systems have low detection rates in these abnormal behaviors Probe (probing), U2R (user to root) and R2L (remote to local). Focusing on this weakness, a new hybrid multi-level intrusion detection method is proposed to identify network data as normal or abnormal behaviors. This method contains KNN (K nearest neighbors) outlier detection algorithm and multi-level random forests (RF) model, called KNN-RF. Firstly KNN outlier detection algorithm is applied to detect and delete outliers in each category and get a small high-quality training dataset. Then according to the similarity of network traffic, a new method of the division of data categories is put forward and this division method can avoid the mutual interference of anomaly behaviors in the detection process, especially for the detecting of the attack behaviors of small traffic. Based on this division, a multi-level random forests model is constructed to detect network abnormal behaviors and improve the efficiency of detecting known and unknown attacks. The popular KDD (knowledge discovery and data mining) Cup 1999 dataset is used to evaluate the performance of the proposed method. Compared with other algorithms, the proposed method is significantly superior to other algorithms in accuracy and detection rate, and can detect Probe, U2R and R2L effectively.
  • 期刊类型引用(9)

    1. 李杰,曹建军,王保卫,庄园. 基于图常量条件函数依赖的图修复规则发现. 计算机技术与发展. 2024(04): 7-15 . 百度学术
    2. 甘润东,王策,李洵. 基于迁移学习的网络传输异构数据一致性校验系统. 自动化技术与应用. 2023(01): 82-85+92 . 百度学术
    3. 许明宇,王宜怀. 异构物联网中关联数据一致性规则挖掘模型. 计算机仿真. 2023(02): 425-428+442 . 百度学术
    4. 董琴,杨涛. 基于RBF神经网络的关联数据一致性挖掘仿真. 计算机仿真. 2023(07): 457-461 . 百度学术
    5. 周春雷,董新微,季良,张璧君,许中平. 基于改进DTW算法的高维时空数据关联挖掘方法. 电子设计工程. 2023(24): 141-144+149 . 百度学术
    6. 沈毅波. RBF神经网络在关联数据一致性挖掘中的应用. 福建电脑. 2022(08): 5-9 . 百度学术
    7. 程瑞营,张攀,肖雨,乔宇杰,张安奕. 基于时序数据的云网协同平台人工智能运维体系. 电信科学. 2022(11): 24-35 . 百度学术
    8. 蒋添任,季于东,侯爱琴. 分布式异构科技资源池数据融合设计. 物联网技术. 2021(06): 62-64 . 百度学术
    9. 祝红艺,杜香莉,淮孟姣,王博雅. 智库服务中的数据源规范标引合作体系建设研究——以作者与机构名称为例. 当代图书馆. 2021(03): 12-15+35 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  1851
  • HTML全文浏览量:  4
  • PDF下载量:  639
  • 被引次数: 13
出版历程
  • 发布日期:  2019-02-28

目录

    /

    返回文章
    返回