A Survey on Graph Processing Accelerators
-
摘要: 在大数据时代,图被用于各种领域表示具有复杂联系的数据.图计算应用被广泛用于各种领域,以挖掘图数据中潜在的价值.图计算应用特有的不规则执行行为,引发了不规则负载、密集读改写更新操作、不规则访存和不规则通信等挑战.现有通用架构无法有效地应对上述挑战.为了克服加速图计算应用面临的挑战,大量的图计算硬件加速架构设计被提出.它们为图计算应用定制了专用的计算流水线、访存子系统、存储子系统和通信子系统.得益于这些定制的硬件设计,图计算加速架构相比于传统的通用处理器架构,在性能和能效上均取得了显著的提升.为了让相关的研究学者深入了解图计算硬件加速架构,首先基于计算机的金字塔组织结构,从上到下对现有工作进行分类和总结,并以多个完整架构实例分析应用于不同层次的优化技术之间的关系.接着以图神经网络加速架构的具体案例讨论新兴图计算应用的加速架构设计.最后对该领域的前沿研究方向进行了总结,并放眼于未来探讨图计算加速架构的发展趋势.Abstract: In the big data era, graphs are used as effective representations of data with the complex relationship in many scenarios. Graph processing applications are widely used in various fields to dig out the potential value of graph data. The irregular execution pattern of graph processing applications introduces irregular workload, intensive read-modify-write updates, irregular memory accesses, and irregular communications. Existing general architectures cannot effectively handle the above challenges. In order to overcome these challenges, a large number of graph processing accelerator designs have been proposed. They tailor the computation pipeline, memory subsystem, storage subsystem, and communication subsystem to the graph processing application. Thanks to these hardware customizations, graph processing accelerators have achieved significant improvements in performance and energy efficiency compared with the state-of-the-art software frameworks running on general architectures. In order to allow the related researchers to have a comprehensive understanding of the graph processing accelerator, this paper first classifies and summarizes customized designs of existing work based on the computer’s pyramid organization structure from top to bottom. This article then discusses the accelerator design of the emerging graph processing application (i.e., graph neural network) with specific graph neural network accelerator cases. In the end, this article discusses the future design trend of the graph processing accelerator.
-
-
期刊类型引用(6)
1. 姚鹏程,廖小飞,金海,周宇航,徐鹏,张伟,曾圳,潘晨高,朱冰. 一种冗余感知的高能效图计算加速器. 中国科学:信息科学. 2024(06): 1369-1385 . 百度学术
2. 杜玉洁,王志刚,王宁,刘芯亦,衣军成,聂婕,魏志强,谷峪,于戈. 分布式多维大图迭代计算性能优化方法. 计算机研究与发展. 2023(03): 654-675 . 本站查看
3. 赵程 ,张志斌 ,郭嘉丰 ,刘丁玮 . 基于块坐标下降法的外存异步图计算系统. 高技术通讯. 2022(08): 825-835 . 百度学术
4. 李策,章隆兵. 基于顶点度数的图数据分区域重排序. 高技术通讯. 2022(09): 903-913 . 百度学术
5. 李策,章隆兵. 基于社区结构的图数据预取器设计. 高技术通讯. 2022(12): 1251-1261 . 百度学术
6. 李涵,严明玉,吕征阳,李文明,叶笑春,范东睿,唐志敏. 图神经网络加速结构综述. 计算机研究与发展. 2021(06): 1204-1229 . 本站查看
其他类型引用(18)
计量
- 文章访问数: 1617
- HTML全文浏览量: 18
- PDF下载量: 1225
- 被引次数: 24