• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
高级检索

基于并行注意力UNet的裂缝检测方法

刘凡, 王君锋, 陈峙宇, 许峰

刘凡, 王君锋, 陈峙宇, 许峰. 基于并行注意力UNet的裂缝检测方法[J]. 计算机研究与发展, 2021, 58(8): 1718-1726. DOI: 10.7544/issn1000-1239.2021.20210335
引用本文: 刘凡, 王君锋, 陈峙宇, 许峰. 基于并行注意力UNet的裂缝检测方法[J]. 计算机研究与发展, 2021, 58(8): 1718-1726. DOI: 10.7544/issn1000-1239.2021.20210335
Liu Fan, Wang Junfeng, Chen Zhiyu, Xu Feng. Parallel Attention Based UNet for Crack Detection[J]. Journal of Computer Research and Development, 2021, 58(8): 1718-1726. DOI: 10.7544/issn1000-1239.2021.20210335
Citation: Liu Fan, Wang Junfeng, Chen Zhiyu, Xu Feng. Parallel Attention Based UNet for Crack Detection[J]. Journal of Computer Research and Development, 2021, 58(8): 1718-1726. DOI: 10.7544/issn1000-1239.2021.20210335
刘凡, 王君锋, 陈峙宇, 许峰. 基于并行注意力UNet的裂缝检测方法[J]. 计算机研究与发展, 2021, 58(8): 1718-1726. CSTR: 32373.14.issn1000-1239.2021.20210335
引用本文: 刘凡, 王君锋, 陈峙宇, 许峰. 基于并行注意力UNet的裂缝检测方法[J]. 计算机研究与发展, 2021, 58(8): 1718-1726. CSTR: 32373.14.issn1000-1239.2021.20210335
Liu Fan, Wang Junfeng, Chen Zhiyu, Xu Feng. Parallel Attention Based UNet for Crack Detection[J]. Journal of Computer Research and Development, 2021, 58(8): 1718-1726. CSTR: 32373.14.issn1000-1239.2021.20210335
Citation: Liu Fan, Wang Junfeng, Chen Zhiyu, Xu Feng. Parallel Attention Based UNet for Crack Detection[J]. Journal of Computer Research and Development, 2021, 58(8): 1718-1726. CSTR: 32373.14.issn1000-1239.2021.20210335

基于并行注意力UNet的裂缝检测方法

基金项目: 江苏省自然科学基金项目(BK20191298);中央高校基本科研业务费专项资金(B200202175);河海大学海岸灾害及防护教育部重点实验室开放基金项目(20150009)
详细信息
  • 中图分类号: TP391

Parallel Attention Based UNet for Crack Detection

Funds: This work was supported by the Natural Science Foundation of Jiangsu Province (BK20191298), the Fundamental Research Funds for the Central Universities (B200202175), and the Open Project of the Key Laboratory of Coastal Disaster and Protection (Hohai University) of Ministry of Euducation (20150009).
  • 摘要: 裂缝对公共设施而言存在着安全隐患,因此裂缝检测是公共设施进行维护的重要手段.由于裂缝图像中存在噪声、光线、阴影等因素干扰,神经网络在训练时极易被影响,导致预测结果出现偏差,降低预测效果.为减少这些干扰,设计了一个并行注意力机制,并将其嵌入到UNet网络的解码部分,进而提出了并行注意力UNet(parallel attention based UNet, PA-UNet).该方法分别从通道和空间2个维度加大裂缝特征权重以抑制干扰,然后对这2个维度生成的特征进行融合,以获得更具互补性的裂缝特征.为了验证该方法的有效性,选取了4个数据集进行实验,结果表明该方法较现有的主流方法,裂缝检测效果更加优异.同时,为了验证并行注意力机制的有效性,选取了4种注意力机制与其进行对比实验,结果表明并行注意力机制效果优于其他注意力机制.
    Abstract: Cracks have hidden safety hazards to public facilities, so crack detection is essential for the maintenance of public facilities. Due to the interference of noise, light, shadow, and other factors in the crack images, the neural network is easily affected during the training process, which causes deviations in the prediction results and reduces the prediction effect. To suppress these disturbances, a parallel attention mechanism is designed and then the parallel attention based UNet(PA-UNet) is proposed by embedding this attention mechanism into UNet. The parallel attention mechanism increases the weights of crack features from the two dimensions of channel and space to suppress interference, then fuses the features generated by these two dimensions to obtain more complementary crack features. To verify the effectiveness of the proposed method, we have conducted experiments on four data sets. Experimental results show that our method outperforms the existing popular methods. Meanwhile, to demonstrate the effectiveness of the parallel attention mechanism, we conduct a comparative experiment with other four attention mechanisms. The results show that the parallel attention mechanism performs better than others.
  • 期刊类型引用(6)

    1. 牛惊雷,牛易航. 基于社会网络分析法的洗钱犯罪数据挖掘侦查技术的改进. 贵州警察学院学报. 2024(06): 71-78 . 百度学术
    2. 蒋忠珍,何景明. 基于在线评论的高端酱香型白酒消费特征分析——以飞天茅台酒在京东上的在线评论为例. 中国酿造. 2021(10): 235-238 . 百度学术
    3. 徐勇,汪倩,武雅利,李晓宇,张心蕊. 用户画像研究的文献计量分析. 榆林学院学报. 2020(02): 4-9 . 百度学术
    4. 李贞,吴勇,耿海军. 基于重引力搜索链接预测和评分传播的大数据推荐系统. 计算机应用与软件. 2020(02): 39-47 . 百度学术
    5. 张艳红,俞龙. 基于噪声检测修正和神经网络的稀疏数据推荐算法. 计算机应用与软件. 2020(08): 274-281 . 百度学术
    6. 汪倩,徐勇,张心蕊,李晓宇. 用户画像研究进展综述. 现代计算机. 2020(24): 60-63 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  769
  • HTML全文浏览量:  19
  • PDF下载量:  561
  • 被引次数: 12
出版历程
  • 发布日期:  2021-07-31

目录

    /

    返回文章
    返回