• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Yang Xinxin, Huang Shaobin. A Hierarchical Co-Clustering Algorithm for High-Order Heterogeneous Data[J]. Journal of Computer Research and Development, 2015, 52(1): 200-210. DOI: 10.7544/issn1000-1239.2015.20130493
Citation: Yang Xinxin, Huang Shaobin. A Hierarchical Co-Clustering Algorithm for High-Order Heterogeneous Data[J]. Journal of Computer Research and Development, 2015, 52(1): 200-210. DOI: 10.7544/issn1000-1239.2015.20130493

A Hierarchical Co-Clustering Algorithm for High-Order Heterogeneous Data

More Information
  • Published Date: December 31, 2014
  • The availability of high-order heterogeneous data represented with multiple features coming from heterogeneous domains is getting more and more common in real world application. High-order co-clustering algorithms can fuse multiple feature space information to improve clustering results effectivity, so recently it is becoming one of the hottest research topics. Most existing high-order co-clustering algorithms are non-hierarchical clustering algorithms. However, there are always hierarchical cluster structures hidden in high-order heterogeneous data. In order to mine the hidden patterns in datasets more effectively, we develop a high-order hierarchical co-clustering algorithm (HHCC). Goodman-Kruskal τ is used to measure the association of objects and features, which is an index measuring association of categorical variables. The objects which are strong association are partitioned into the same objects clusters, and simutaneously the features which are strong association are partitioned into the same features clusters too. HHCC algorithm uses Goodman-Kruskal τ to quantify the quality of clustering results of objects and features of every level. According to optimizing Goodman-Kruskal τ by a locally search approach, the number of clusters is automatically determined and clustering results of every hierarchy are obtained. The top-down strategy is adopted and a tree-like cluster structure is formed at last. Experimental results demonstrate that HHCC algorithm outperforms four classical homogeneous hierarchical algorithms and five previous high-order co-clustering algorithms.
  • Related Articles

    [1]Zhang Xuguang, Chen Mingkai, Wei Xin. Ubiquitous Video Transmission Scheduling Supported by Computing Power Network[J]. Journal of Computer Research and Development, 2023, 60(4): 786-796. DOI: 10.7544/issn1000-1239.202330005
    [2]Xiang Chaocan, Cheng Wenhui, Zhang Zhao, Jiao Xianlong, Qu Yuben, Chen Chao, Dai Haipeng. Intelligent Edge Computing-Empowered Adaptive Urban Traffic Sensing Data Recovery[J]. Journal of Computer Research and Development, 2023, 60(3): 619-634. DOI: 10.7544/issn1000-1239.202110962
    [3]Li Yin, Chen Yong, Zhao Jingxin, Yue Xinghui, Zheng Chen, Wu Yanjun, Wu Gaofei. Survey of Ubiquitous Computing Security[J]. Journal of Computer Research and Development, 2022, 59(5): 1054-1081. DOI: 10.7544/issn1000-1239.20211248
    [4]Wang Taochun, Jin Xin, Lü Chengmei, Chen Fulong, Zhao Chuanxin. Privacy Preservation Method of Data Aggregation in Mobile Crowd Sensing[J]. Journal of Computer Research and Development, 2020, 57(11): 2337-2347. DOI: 10.7544/issn1000-1239.2020.20190579
    [5]Jing Yao, Guo Bin, Chen Huihui, Yue Chaogang, Wang Zhu, Yu Zhiwen. CrowdTracker: Object Tracking Using Mobile Crowd Sensing[J]. Journal of Computer Research and Development, 2019, 56(2): 328-337. DOI: 10.7544/issn1000-1239.2019.20170808
    [6]Liu Jingjie, Nie Lei. Bayesian Current Disaggregation: Sensing the Current Waveforms of Household Appliances Using One Sensor[J]. Journal of Computer Research and Development, 2018, 55(3): 662-672. DOI: 10.7544/issn1000-1239.2018.20150311
    [7]Lin Xin, Li Shanping, Yang Zhaohui, Xu Jian. A Reasoning-Oriented Context Replacement Algorithm in Pervasive Computing[J]. Journal of Computer Research and Development, 2009, 46(4): 549-557.
    [8]Sun Peigang, Zhao Hai, Han Guangjie, Zhang Xiyuan, Zhu Jian. Chaos Triangle Compliant Location Reference Node Selection Algorithm[J]. Journal of Computer Research and Development, 2007, 44(12): 1987-1995.
    [9]Tang Lei, Liao Yuan, Li Mingshu, Huai Xiaoyong. The Dynamic Deployment Problem and the Algorithm of Service Component for Pervasive Computing[J]. Journal of Computer Research and Development, 2007, 44(5): 815-822.
    [10]Li Rui and Li Renfa. A Survey of Context-Aware Computing and Its System Infrastructure[J]. Journal of Computer Research and Development, 2007, 44(2): 269-276.
  • Cited by

    Periodical cited type(12)

    1. 罗怡. 基于传感器技术的心理健康自动监管与测评研究. 自动化与仪器仪表. 2023(07): 240-243 .
    2. 金敏. 基于虚拟现实技术的心理健康状况测评系统. 信息技术. 2023(11): 17-21+27 .
    3. 孙永明,杨进. 自适应插值与特征压缩的小样本数据分类研究. 计算机工程与应用. 2022(01): 106-112 .
    4. 任倩,王博. 护理专业实习生心理健康风险评估研究. 职业卫生与应急救援. 2022(01): 32-38 .
    5. 李盼盼,梁丰,彭虎军. 基于数据感知技术的心理健康状态实时跟踪研究. 电子设计工程. 2022(12): 138-142 .
    6. 姜灵芝. 基于大数据分析技术的心理健康智能评测系统设计. 微型电脑应用. 2022(07): 30-34 .
    7. 吴苏礼,雷双媛,王冠卓,刘大旭. 基于传感器感知数据的心理健康状态实时跟踪研究. 微型电脑应用. 2022(08): 43-46 .
    8. 孙锐,刘少楠,付宏鹏. 基于感知数据的大学生心理可承受风险自动评估系统. 现代电子技术. 2021(13): 164-168 .
    9. 李亚玲,李飞. 基于多特征融合的大学生心理健康智能评测系统设计. 现代电子技术. 2021(18): 149-152 .
    10. 陶涛,孙玉娥,陈冬梅,杨文建,黄河,罗永龙. 一种基于智能手机传感器数据的地图轮廓生成方法. 计算机研究与发展. 2020(07): 1490-1507 . 本站查看
    11. 孙永明,杨进. 基于BSTL与XGDT算法对多级别心理压力的评估. 经济数学. 2020(04): 148-158 .
    12. 梁丰,李盼盼,彭虎军. 感知数据的大学生心理可承受风险评估系统. 信息技术. 2020(12): 28-32 .

    Other cited types(3)

Catalog

    Article views (1672) PDF downloads (806) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return