• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wu Lei, Zhang Wensheng, Wang Jue. Hidden Topic Variable Graphical Model Based on Deep Learning Framework[J]. Journal of Computer Research and Development, 2015, 52(1): 191-199. DOI: 10.7544/issn1000-1239.2015.20131113
Citation: Wu Lei, Zhang Wensheng, Wang Jue. Hidden Topic Variable Graphical Model Based on Deep Learning Framework[J]. Journal of Computer Research and Development, 2015, 52(1): 191-199. DOI: 10.7544/issn1000-1239.2015.20131113

Hidden Topic Variable Graphical Model Based on Deep Learning Framework

More Information
  • Published Date: December 31, 2014
  • The hidden topic variable graphical model represents potential topics or potential topic changes by nodes. The current study of hidden topic variable graphical models suffers from the flaw that they can only extract single level topic nodes. This paper proposes a probabilistic graphical model based on the framework of deep learning to extract multi-level topic nodes. The model adds the preprocessing layer to the bottom of the hidden topic variable graphical model. The preprocessing layer used in the paper is the self-organizing maps (SOM) model. By introducing the SOM, the model can effectively extract different topic status with those extracted by the hidden topic variable graphical model. In addition, the hidden topic variable graphical model used in this paper is constructed by hidden Markov model (HMM) and conditional random field (CRF). In order to make up the short-distance dependency Markov property, we use the characteristic function defined by first-order logic. On this basis, we propose a new algorithm by hierarchically extracting topic status. Experimental results on both the international universal Amazon sentiment analysis dataset and the Tripadvisor sentiment analysis dataset show that the proposed algorithm improves the accuracy of sentiment analysis. And the new algorithm can mine more macroscopic topic distribution information and local topic information.
  • Related Articles

    [1]Dai Wangzhou, Zhou Zhihua. A Survey on Inductive Logic Programming[J]. Journal of Computer Research and Development, 2019, 56(1): 138-154. DOI: 10.7544/issn1000-1239.2019.20180759
    [2]Song Yang, Wang Houfeng. Chinese Zero Anaphora Resolution with Markov Logic[J]. Journal of Computer Research and Development, 2015, 52(9): 2114-2122. DOI: 10.7544/issn1000-1239.2015.20140620
    [3]Cheng Bailiang, Zeng Guosun, Jie Anquan. Study of Multi-Agent Trust Coalition Based on Self-Organization Evolution[J]. Journal of Computer Research and Development, 2010, 47(8): 1382-1391.
    [4]Shi Chunqi, Shi Zhiping, Liu Xi, Shi Zhongzhi. Image Segmentation Based on Self-Organizing Dynamic Neural Network[J]. Journal of Computer Research and Development, 2009, 46(1): 23-30.
    [5]Huang Jing, Liu Dayou, Yang Bo, and Jin Di. A Self-Organization Based Divide and Conquer Algorithm for Distributed Constraint Optimization Problems[J]. Journal of Computer Research and Development, 2008, 45(11): 1831-1839.
    [6]Wang Wei and Zeng Guosun. Self-Organization Resource Topology Revolution Based on Trust Mechanism[J]. Journal of Computer Research and Development, 2007, 44(11): 1849-1856.
    [7]Ge Hongwei and Liang Yanchun. A Multiple Sequence Alignment Algorithm Based on a Hidden Markov Model and Immune Particle Swarm Optimization[J]. Journal of Computer Research and Development, 2006, 43(8): 1330-1336.
    [8]Zhang Xinliang and Shi Chunyi. A Description-Logic Based Agent Organization[J]. Journal of Computer Research and Development, 2005, 42(11): 1843-1848.
    [9]Wang Wansen, He Huacan. Research and Analysis of Probability Logic Based on Universal Logics[J]. Journal of Computer Research and Development, 2005, 42(7): 1204-1209.
    [10]Hou Yuexian, Ding Zheng, and He Pilian. Self-Organizing Isometric Embedding[J]. Journal of Computer Research and Development, 2005, 42(2): 188-195.
  • Cited by

    Periodical cited type(12)

    1. 罗怡. 基于传感器技术的心理健康自动监管与测评研究. 自动化与仪器仪表. 2023(07): 240-243 .
    2. 金敏. 基于虚拟现实技术的心理健康状况测评系统. 信息技术. 2023(11): 17-21+27 .
    3. 孙永明,杨进. 自适应插值与特征压缩的小样本数据分类研究. 计算机工程与应用. 2022(01): 106-112 .
    4. 任倩,王博. 护理专业实习生心理健康风险评估研究. 职业卫生与应急救援. 2022(01): 32-38 .
    5. 李盼盼,梁丰,彭虎军. 基于数据感知技术的心理健康状态实时跟踪研究. 电子设计工程. 2022(12): 138-142 .
    6. 姜灵芝. 基于大数据分析技术的心理健康智能评测系统设计. 微型电脑应用. 2022(07): 30-34 .
    7. 吴苏礼,雷双媛,王冠卓,刘大旭. 基于传感器感知数据的心理健康状态实时跟踪研究. 微型电脑应用. 2022(08): 43-46 .
    8. 孙锐,刘少楠,付宏鹏. 基于感知数据的大学生心理可承受风险自动评估系统. 现代电子技术. 2021(13): 164-168 .
    9. 李亚玲,李飞. 基于多特征融合的大学生心理健康智能评测系统设计. 现代电子技术. 2021(18): 149-152 .
    10. 陶涛,孙玉娥,陈冬梅,杨文建,黄河,罗永龙. 一种基于智能手机传感器数据的地图轮廓生成方法. 计算机研究与发展. 2020(07): 1490-1507 . 本站查看
    11. 孙永明,杨进. 基于BSTL与XGDT算法对多级别心理压力的评估. 经济数学. 2020(04): 148-158 .
    12. 梁丰,李盼盼,彭虎军. 感知数据的大学生心理可承受风险评估系统. 信息技术. 2020(12): 28-32 .

    Other cited types(3)

Catalog

    Article views (1848) PDF downloads (1349) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return