• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Haifeng, Chen Qingkui. Multi-Indices Self-Approximate Optimal Power Consumption Control Model of GPU Clusters[J]. Journal of Computer Research and Development, 2015, 52(1): 105-115. DOI: 10.7544/issn1000-1239.2015.20131195
Citation: Wang Haifeng, Chen Qingkui. Multi-Indices Self-Approximate Optimal Power Consumption Control Model of GPU Clusters[J]. Journal of Computer Research and Development, 2015, 52(1): 105-115. DOI: 10.7544/issn1000-1239.2015.20131195

Multi-Indices Self-Approximate Optimal Power Consumption Control Model of GPU Clusters

More Information
  • Published Date: December 31, 2014
  • GPU clusters have become important high-performance parallel computing systems in the large-scale stream data field. In practice, the computing requires high computing speed, less power consumption and better reliability.So GPU clusters have three significantly performance indices restrainting each others that are computing speed, power consumption and reliability. In real-time computing phase, it needs to dynamically search the optimal point that is the tradeoff among computing speed, power consumption optimization and reliability. So the multi-indices optimization in GPU clusters power consumption control process is a challenging issue. To consider the three indices simultaneously, a comprehensive index is generated by maxinum entropy function that can combine them. Then an adaptable control model is built based on model prediction theory that can dynamically scale power consumption status with the workloads variation. This control model can cap the redundant energy consumption and control the power consumption of the GPU clusters under a specific ideal set point while guaranteeing computing speed and reliability. Compared with the control scheme without considering reliability, the results demonstrate that the proposed control scheme has better control stability and robustness and is very suitable to apply into GPU cluster power management projects to handle the real-time large-scale stream data.
  • Related Articles

    [1]Zhang Xuguang, Chen Mingkai, Wei Xin. Ubiquitous Video Transmission Scheduling Supported by Computing Power Network[J]. Journal of Computer Research and Development, 2023, 60(4): 786-796. DOI: 10.7544/issn1000-1239.202330005
    [2]Xiang Chaocan, Cheng Wenhui, Zhang Zhao, Jiao Xianlong, Qu Yuben, Chen Chao, Dai Haipeng. Intelligent Edge Computing-Empowered Adaptive Urban Traffic Sensing Data Recovery[J]. Journal of Computer Research and Development, 2023, 60(3): 619-634. DOI: 10.7544/issn1000-1239.202110962
    [3]Li Yin, Chen Yong, Zhao Jingxin, Yue Xinghui, Zheng Chen, Wu Yanjun, Wu Gaofei. Survey of Ubiquitous Computing Security[J]. Journal of Computer Research and Development, 2022, 59(5): 1054-1081. DOI: 10.7544/issn1000-1239.20211248
    [4]Wang Taochun, Jin Xin, Lü Chengmei, Chen Fulong, Zhao Chuanxin. Privacy Preservation Method of Data Aggregation in Mobile Crowd Sensing[J]. Journal of Computer Research and Development, 2020, 57(11): 2337-2347. DOI: 10.7544/issn1000-1239.2020.20190579
    [5]Jing Yao, Guo Bin, Chen Huihui, Yue Chaogang, Wang Zhu, Yu Zhiwen. CrowdTracker: Object Tracking Using Mobile Crowd Sensing[J]. Journal of Computer Research and Development, 2019, 56(2): 328-337. DOI: 10.7544/issn1000-1239.2019.20170808
    [6]Liu Jingjie, Nie Lei. Bayesian Current Disaggregation: Sensing the Current Waveforms of Household Appliances Using One Sensor[J]. Journal of Computer Research and Development, 2018, 55(3): 662-672. DOI: 10.7544/issn1000-1239.2018.20150311
    [7]Lin Xin, Li Shanping, Yang Zhaohui, Xu Jian. A Reasoning-Oriented Context Replacement Algorithm in Pervasive Computing[J]. Journal of Computer Research and Development, 2009, 46(4): 549-557.
    [8]Sun Peigang, Zhao Hai, Han Guangjie, Zhang Xiyuan, Zhu Jian. Chaos Triangle Compliant Location Reference Node Selection Algorithm[J]. Journal of Computer Research and Development, 2007, 44(12): 1987-1995.
    [9]Tang Lei, Liao Yuan, Li Mingshu, Huai Xiaoyong. The Dynamic Deployment Problem and the Algorithm of Service Component for Pervasive Computing[J]. Journal of Computer Research and Development, 2007, 44(5): 815-822.
    [10]Li Rui and Li Renfa. A Survey of Context-Aware Computing and Its System Infrastructure[J]. Journal of Computer Research and Development, 2007, 44(2): 269-276.

Catalog

    Article views (1215) PDF downloads (615) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return