• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Peng Hu, Wu Zhijian, Zhou Xinyu, Deng Changshou. Bare-Bones Differential Evolution Algorithm Based on Trigonometry[J]. Journal of Computer Research and Development, 2015, 52(12): 2776-2788. DOI: 10.7544/issn1000-1239.2015.20140230
Citation: Peng Hu, Wu Zhijian, Zhou Xinyu, Deng Changshou. Bare-Bones Differential Evolution Algorithm Based on Trigonometry[J]. Journal of Computer Research and Development, 2015, 52(12): 2776-2788. DOI: 10.7544/issn1000-1239.2015.20140230

Bare-Bones Differential Evolution Algorithm Based on Trigonometry

More Information
  • Published Date: November 30, 2015
  • DE algorithm is one of the most popular and powerful evolutionary algorithms for global optimization problems. However, the performance of DE is greatly influenced by the selected suitable mutation strategy and parameter settings, but this choosing task is a challenge work and time-consuming. In order to solve this defect, a novel bare-bones differential evolution algorithm based on trigonometry, called tBBDE, is proposed in this paper. The convergence performance of the algorithm is then analyzed in terms of the stochastic functional theory. In the paper the proposed algorithm adopts the triangle Gaussian mutation strategy as well as ternary crossover and adaptive crossover probability strategy for individual update. When the algorithm is trapped into premature convergence and stagnation, it will execute population disturbance. In this case, the proposed algorithm not only inherits the advantages of bare-bones algorithm but also retains the characteristics of DE evolution based on the differential information of randomly selected individuals. The experimental studies have been conducted on 26 benchmark functions including unimodal, multimodal, shifted and high-dimensional test functions, while the results have verified the effectiveness and reliability. Besides, comparied with the other bare-bones algorithms and the state-of-the-art, DE variants has proved that the algorithm is a type of new competitive algorithm.
  • Related Articles

    [1]LiFeng, PanJingkui. Human Motion Recognition Based on Triaxial Accelerometer[J]. Journal of Computer Research and Development, 2016, 53(3): 621-631. DOI: 10.7544/issn1000-1239.2016.20148159
    [2]Lü Zhiguo, Li Yan, Xu Xin. Research on Fast 3D Hand Motion Tracking System[J]. Journal of Computer Research and Development, 2012, 49(7): 1398-1407.
    [3]Liu Weibin, Liu Xingqi, Xing Weiwei, Yuan Baozong. Improving Motion Synthesis by Semantic Control[J]. Journal of Computer Research and Development, 2011, 48(7): 1255-1262.
    [4]Lu Jiyuan, Zhang Peizhao, Duan Xiaohua, Chao Hongyang. An Optimized Motion Estimation Algorithm Based on Macroblock Priorities[J]. Journal of Computer Research and Development, 2011, 48(3): 494-500.
    [5]Xia Shihong, Wei Yi, and Wang Zhaoqi. A Survey of Physics-Based Human Motion Simulation[J]. Journal of Computer Research and Development, 2010, 47(8): 1354-1361.
    [6]Zong Dan, Li Chunpeng, Xia Shihong, Wang Zhaoqi. Key-Postures Based Automated Construction of Motion Graph[J]. Journal of Computer Research and Development, 2010, 47(8): 1321-1328.
    [7]Zhang Zhixian, Liu Jianhua, and Ning Ruxin. Research on Motion Simulation Realization Technology of Planar Linkage Based on Virtual Environment[J]. Journal of Computer Research and Development, 2010, 47(6): 979-987.
    [8]Mao Tianlu, Xia Shihong, Zhu Xiaolong, and Wang Zhaoqi. Real-Time Garment Animation Based on Mixed Model[J]. Journal of Computer Research and Development, 2010, 47(1): 8-15.
    [9]Yang Yuedong, Wang Lili, and Hao Aimin. Motion String: A Motion Capture Data Representation for Behavior Segmentation[J]. Journal of Computer Research and Development, 2008, 45(3): 527-534.
    [10]Zhao Guoying, Li Zhenbo, Deng Yu, Li Hua. Human Motion Recognition and Simulation Based on Retrieval[J]. Journal of Computer Research and Development, 2006, 43(2): 368-373.

Catalog

    Article views (1352) PDF downloads (852) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return