• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Degan, Song Xiaodong, Zheng Ke, Liang Yanpin. A Kind of New Anti-Collision Approach Based on AID[J]. Journal of Computer Research and Development, 2015, 52(12): 2725-2735. DOI: 10.7544/issn1000-1239.2015.20140560
Citation: Zhang Degan, Song Xiaodong, Zheng Ke, Liang Yanpin. A Kind of New Anti-Collision Approach Based on AID[J]. Journal of Computer Research and Development, 2015, 52(12): 2725-2735. DOI: 10.7544/issn1000-1239.2015.20140560

A Kind of New Anti-Collision Approach Based on AID

More Information
  • Published Date: November 30, 2015
  • The RFID technology is one of the key technologies of the Internet of things which need to be studied. Based on our researches of the RFID technologies, a kind of new anti-collision approach based on AID (associated ID) has been put forward in this paper. As we know, the realization mechanism of anti-collision approach is between the tags with the memory and the memory-less tags. We propose a method to build the association between tags with memory, so that tags in a certain trigger condition can take the initiative to send their own ID.Tags use modulated binary pulse to send data to the reader. This approach is different from that with the memory-less tags. Because there exists association relationship between father-tag and son-tag, when it is applied to the multi-tree searching method that we have proposed, the advantage of this method is that a single communication can identify multiple tags at one time, which has greatly improved the identification efficiency. When the approach is applied to the uncertainty ALOHA algorithm, the reader can decide the location of the empty slots based on the position of the binary pulse, so the working reader can avoid the efficiency decreasing problem caused by reading empty slots. Due to no limit of ID length, experimental results of our simulations show that this approach can greatly decrease the probability of collision and improve the identification efficiency of the system during many kinds of its applications.
  • Related Articles

    [1]LiFeng, PanJingkui. Human Motion Recognition Based on Triaxial Accelerometer[J]. Journal of Computer Research and Development, 2016, 53(3): 621-631. DOI: 10.7544/issn1000-1239.2016.20148159
    [2]Lü Zhiguo, Li Yan, Xu Xin. Research on Fast 3D Hand Motion Tracking System[J]. Journal of Computer Research and Development, 2012, 49(7): 1398-1407.
    [3]Liu Weibin, Liu Xingqi, Xing Weiwei, Yuan Baozong. Improving Motion Synthesis by Semantic Control[J]. Journal of Computer Research and Development, 2011, 48(7): 1255-1262.
    [4]Lu Jiyuan, Zhang Peizhao, Duan Xiaohua, Chao Hongyang. An Optimized Motion Estimation Algorithm Based on Macroblock Priorities[J]. Journal of Computer Research and Development, 2011, 48(3): 494-500.
    [5]Xia Shihong, Wei Yi, and Wang Zhaoqi. A Survey of Physics-Based Human Motion Simulation[J]. Journal of Computer Research and Development, 2010, 47(8): 1354-1361.
    [6]Zong Dan, Li Chunpeng, Xia Shihong, Wang Zhaoqi. Key-Postures Based Automated Construction of Motion Graph[J]. Journal of Computer Research and Development, 2010, 47(8): 1321-1328.
    [7]Zhang Zhixian, Liu Jianhua, and Ning Ruxin. Research on Motion Simulation Realization Technology of Planar Linkage Based on Virtual Environment[J]. Journal of Computer Research and Development, 2010, 47(6): 979-987.
    [8]Mao Tianlu, Xia Shihong, Zhu Xiaolong, and Wang Zhaoqi. Real-Time Garment Animation Based on Mixed Model[J]. Journal of Computer Research and Development, 2010, 47(1): 8-15.
    [9]Yang Yuedong, Wang Lili, and Hao Aimin. Motion String: A Motion Capture Data Representation for Behavior Segmentation[J]. Journal of Computer Research and Development, 2008, 45(3): 527-534.
    [10]Zhao Guoying, Li Zhenbo, Deng Yu, Li Hua. Human Motion Recognition and Simulation Based on Retrieval[J]. Journal of Computer Research and Development, 2006, 43(2): 368-373.

Catalog

    Article views (1115) PDF downloads (561) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return