• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Jiang Qingfeng, Men Chaoguang, Li Xiang, He Zhongzheng. A Virtual Currency-Based Incentive-Aware Low Delay Routing for DTNs[J]. Journal of Computer Research and Development, 2015, 52(12): 2707-2724. DOI: 10.7544/issn1000-1239.2015.20140566
Citation: Jiang Qingfeng, Men Chaoguang, Li Xiang, He Zhongzheng. A Virtual Currency-Based Incentive-Aware Low Delay Routing for DTNs[J]. Journal of Computer Research and Development, 2015, 52(12): 2707-2724. DOI: 10.7544/issn1000-1239.2015.20140566

A Virtual Currency-Based Incentive-Aware Low Delay Routing for DTNs

More Information
  • Published Date: November 30, 2015
  • Due to the limited resources such as bandwidth, buffer, energy, and so on, most delay tolerant networks (DTNs) nodes are selfish and do not forward messages for other nodes to save their precious resources, which seriously degrades the routing performance. To stimulate the DTNs selfish nodes to cooperatively forward messages and reduce the message delivery delay, this paper proposes a virtual currency-based incentive-aware low delay routing algorithm, called VCILDR. A delay-based currency payment and allocation strategy is established to encourage selfish nodes to forward messages for other nodes in VCILDR. In this way, the direct beneficial messages are forwarded to the nodes with lower delivery delay and mutually beneficial messages are exchanged at the same time. A bargaining game model of alternating offers is established to determine the exchanged mutually beneficial messages. In addition, a greedy algorithm for solving the model’s subgame perfect equilibrium is proposed in this paper. Extensive simulations are carried out on real-world dataset to verify the performance of this incentive-aware low delay routing. The experimental results show that the proposed routing can effectively stimulate DTNs selfish nodes to cooperatively forward messages for others, reduce the message delivery delay and improve the message delivery success ratio at the same time.
  • Related Articles

    [1]Yue Wenjing, Qu Wenwen, Lin Kuan, Wang Xiaoling. Survey of Cardinality Estimation Techniques Based on Machine Learning[J]. Journal of Computer Research and Development, 2024, 61(2): 413-427. DOI: 10.7544/issn1000-1239.202220649
    [2]Li Jianing, Xiong Ruibin, Lan Yanyan, Pang Liang, Guo Jiafeng, Cheng Xueqi. Overview of the Frontier Progress of Causal Machine Learning[J]. Journal of Computer Research and Development, 2023, 60(1): 59-84. DOI: 10.7544/issn1000-1239.202110780
    [3]Wang Ye, Chen Junwu, Xia Xin, Jiang Bo. Intelligent Requirements Elicitation and Modeling: A Literature Review[J]. Journal of Computer Research and Development, 2021, 58(4): 683-705. DOI: 10.7544/issn1000-1239.2021.20200740
    [4]Chen Jinyin, Chen Yipeng, Chen Yiming, Zheng Haibin, Ji Shouling, Shi Jie, Cheng Yao. Fairness Research on Deep Learning[J]. Journal of Computer Research and Development, 2021, 58(2): 264-280. DOI: 10.7544/issn1000-1239.2021.20200758
    [5]Cheng Keyang, Wang Ning, Shi Wenxi, Zhan Yongzhao. Research Advances in the Interpretability of Deep Learning[J]. Journal of Computer Research and Development, 2020, 57(6): 1208-1217. DOI: 10.7544/issn1000-1239.2020.20190485
    [6]Liu Chenyi, Xu Mingwei, Geng Nan, Zhang Xiang. A Survey on Machine Learning Based Routing Algorithms[J]. Journal of Computer Research and Development, 2020, 57(4): 671-687. DOI: 10.7544/issn1000-1239.2020.20190866
    [7]Liu Junxu, Meng Xiaofeng. Survey on Privacy-Preserving Machine Learning[J]. Journal of Computer Research and Development, 2020, 57(2): 346-362. DOI: 10.7544/issn1000-1239.2020.20190455
    [8]Ji Shouling, Li Jinfeng, Du Tianyu, Li Bo. Survey on Techniques, Applications and Security of Machine Learning Interpretability[J]. Journal of Computer Research and Development, 2019, 56(10): 2071-2096. DOI: 10.7544/issn1000-1239.2019.20190540
    [9]Meng Xiaofeng, Ma Chaohong, Yang Chen. Survey on Machine Learning for Database Systems[J]. Journal of Computer Research and Development, 2019, 56(9): 1803-1820. DOI: 10.7544/issn1000-1239.2019.20190446
    [10]Yu Kai, Jia Lei, Chen Yuqiang, and Xu Wei. Deep Learning: Yesterday, Today, and Tomorrow[J]. Journal of Computer Research and Development, 2013, 50(9): 1799-1804.
  • Cited by

    Periodical cited type(5)

    1. 周军芽,吴进伟,吴广飞,张何为. 基于Bi-LSTM神经网络的短文本敏感词识别方法. 武汉理工大学学报(信息与管理工程版). 2024(02): 312-316 .
    2. 石新满,胡广林,邵鑫,赵新爽,张思慧,乔晓. 基于人工智能大语言模型技术的电网优化运行应用分析. 自动化与仪器仪表. 2024(08): 180-184 .
    3. 李卓卓,蒋雨萌. 信息隐私量表对象、指标和应用的研究与展望. 情报理论与实践. 2024(10): 41-52 .
    4. 谭九生,李猛. 人机融合智能的伦理风险及其适应性治理. 昆明理工大学学报(社会科学版). 2022(03): 37-45 .
    5. 潘旭东,张谧,杨珉. 基于神经元激活模式控制的深度学习训练数据泄露诱导. 计算机研究与发展. 2022(10): 2323-2337 . 本站查看

    Other cited types(7)

Catalog

    Article views (1238) PDF downloads (620) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return