• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Luan Hua, Zhou Mingquan, Fu Yan. Frequent Graph Mining on Multi-Core Processor[J]. Journal of Computer Research and Development, 2015, 52(12): 2844-2856. DOI: 10.7544/issn1000-1239.2015.20140598
Citation: Luan Hua, Zhou Mingquan, Fu Yan. Frequent Graph Mining on Multi-Core Processor[J]. Journal of Computer Research and Development, 2015, 52(12): 2844-2856. DOI: 10.7544/issn1000-1239.2015.20140598

Frequent Graph Mining on Multi-Core Processor

More Information
  • Published Date: November 30, 2015
  • Multi-core processors have become the mainstream of modern processor architecture. Frequent graph mining is a popular problem that has practical applications in many domains. Accelerating the mining process of frequent graphs by taking full advantage of multi-core processors has research significance and practical values. A parallel mining strategy based on depth-first search (DFS) is proposed and a task pool is used to maintain the workload. Compared with the method that utilizes breadth-first search, data temporal locality performance can be improved and a large amount of memory is saved. Cache conscious node-edge arrays in which record data of a thread are arranged continuously are designed to decrease the data size to represent original graphs and cache miss ratio. False sharing that severely degrades performance is mostly eliminated. In order to reduce lock contentions, a flexible method is explored to look for work tasks and memory management queues are utilized to reduce the overhead due to frequent memory allocation and free operations. A detailed performance study and analysis is conducted on both synthetic data and real data sets. The results show that the proposed techniques can efficiently lower memory usage and cache misses and achieve a 10-fold speedup on a 12-core machine.
  • Related Articles

    [1]LiFeng, PanJingkui. Human Motion Recognition Based on Triaxial Accelerometer[J]. Journal of Computer Research and Development, 2016, 53(3): 621-631. DOI: 10.7544/issn1000-1239.2016.20148159
    [2]Lü Zhiguo, Li Yan, Xu Xin. Research on Fast 3D Hand Motion Tracking System[J]. Journal of Computer Research and Development, 2012, 49(7): 1398-1407.
    [3]Liu Weibin, Liu Xingqi, Xing Weiwei, Yuan Baozong. Improving Motion Synthesis by Semantic Control[J]. Journal of Computer Research and Development, 2011, 48(7): 1255-1262.
    [4]Lu Jiyuan, Zhang Peizhao, Duan Xiaohua, Chao Hongyang. An Optimized Motion Estimation Algorithm Based on Macroblock Priorities[J]. Journal of Computer Research and Development, 2011, 48(3): 494-500.
    [5]Xia Shihong, Wei Yi, and Wang Zhaoqi. A Survey of Physics-Based Human Motion Simulation[J]. Journal of Computer Research and Development, 2010, 47(8): 1354-1361.
    [6]Zong Dan, Li Chunpeng, Xia Shihong, Wang Zhaoqi. Key-Postures Based Automated Construction of Motion Graph[J]. Journal of Computer Research and Development, 2010, 47(8): 1321-1328.
    [7]Zhang Zhixian, Liu Jianhua, and Ning Ruxin. Research on Motion Simulation Realization Technology of Planar Linkage Based on Virtual Environment[J]. Journal of Computer Research and Development, 2010, 47(6): 979-987.
    [8]Mao Tianlu, Xia Shihong, Zhu Xiaolong, and Wang Zhaoqi. Real-Time Garment Animation Based on Mixed Model[J]. Journal of Computer Research and Development, 2010, 47(1): 8-15.
    [9]Yang Yuedong, Wang Lili, and Hao Aimin. Motion String: A Motion Capture Data Representation for Behavior Segmentation[J]. Journal of Computer Research and Development, 2008, 45(3): 527-534.
    [10]Zhao Guoying, Li Zhenbo, Deng Yu, Li Hua. Human Motion Recognition and Simulation Based on Retrieval[J]. Journal of Computer Research and Development, 2006, 43(2): 368-373.

Catalog

    Article views (1172) PDF downloads (627) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return