• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liao Guoqiong, Wang Tingli, Deng Kun, Wan Changxuan. Multi-User Location Proximity Prediction in Offline Ephemeral Social Networks[J]. Journal of Computer Research and Development, 2016, 53(11): 2645-2653. DOI: 10.7544/issn1000-1239.2016.20150388
Citation: Liao Guoqiong, Wang Tingli, Deng Kun, Wan Changxuan. Multi-User Location Proximity Prediction in Offline Ephemeral Social Networks[J]. Journal of Computer Research and Development, 2016, 53(11): 2645-2653. DOI: 10.7544/issn1000-1239.2016.20150388

Multi-User Location Proximity Prediction in Offline Ephemeral Social Networks

More Information
  • Published Date: October 31, 2016
  • Offline ephemeral social network (OffESN) is defined as a new kind of offline social networks created at a specific location for a specific purpose temporally, and lasting for a short period of time. With the popularity of mobile intelligent terminals and the development of short distance communication technologies such as Bluetooth and RFID, the OffESN is receiving more and more attentions from industry and academic communities. Location proximity relations are encounter relations of the users in the OffESN. Aiming to the characteristics such as dynamic change and short duration time, this paper intends to study the problem of multi-user location proximity in the OffESN. First of all, the paper puts forward relevant concepts in the OffESN and defines the problem to be solved. Then, it designs the overall framework of multi-user location proximity prediction, including network segments collection, overlay networks construction, network filter and maximal close subgraphs discovery. Based on the framework and the splitting idea, the paper suggests a maximal close subgraph discovery algorithm for predicting multi-user location proximity. The algorithm uses weighted edge betweenness (WEB) as the basis of splitting, and uses the aggregate density as the termination condition of spitting, which can effectively solve the problem that both numbers of location proximity relations and the users in each location proximity are uncertain. Finally, the experiments on two real datasets verify the feasibility and efficiency of the suggested prediction strategy.
  • Related Articles

    [1]Zhang Zhongya, Wu Wenling, Zou Jian. Quantum Differential Collision Key Recovery Attack of Multi-Round EM Structure[J]. Journal of Computer Research and Development, 2021, 58(12): 2811-2818. DOI: 10.7544/issn1000-1239.2021.20200427
    [2]Zhang Yukun, Yuan Xiao. Quantum Error Mitigation: A Review[J]. Journal of Computer Research and Development, 2021, 58(9): 1843-1855. DOI: 10.7544/issn1000-1239.2021.20210367
    [3]Li Zichen, Xie Ting, Zhang Juanmei, Xu Ronghua. Post Quantum Authenticated Key Exchange Protocol Based on Ring Learning with Errors Problem[J]. Journal of Computer Research and Development, 2019, 56(12): 2694-2701. DOI: 10.7544/issn1000-1239.2019.20180874
    [4]Wang Tiefeng, Cai Ying, Zhang Yujie. Reputation-Based Defense Scheme Against Pollution Attacks on Network Coding[J]. Journal of Computer Research and Development, 2016, 53(11): 2491-2499. DOI: 10.7544/issn1000-1239.2016.20150502
    [5]Yue Daheng, Qi Shubo, Li Shaoqing, and Zhang Minxuan. A DPA Resistant Technology Based on Register Switching Time Randomization[J]. Journal of Computer Research and Development, 2012, 49(3): 491-498.
    [6]Hu Jianli, Zhou Bin, Wu Quanyuan, Li Xiaohua. A Reputation Based Attack-Resistant Distributed Trust Management Model for P2P Networks[J]. Journal of Computer Research and Development, 2011, 48(12): 2235-2241.
    [7]Tong Yuanman, Wang Zhiying, Dai Kui, and Lu Hongyi. Quantitative Evaluation of the Cryptographic Block’s Resistibility to Power Analysis Attack at Different Design Level[J]. Journal of Computer Research and Development, 2009, 46(6): 940-947.
    [8]Tong Yuanman, Wang Zhiying, Dai Kui, and Lu Hongyi. A DPA and HO-DPA Resistant Implementation of AES[J]. Journal of Computer Research and Development, 2009, 46(3): 377-383.
    [9]Lou Oujun, Wang Xianghai, Wang Zhengxuan. Research on Quantization-Based Robust Video Watermarking Technique Against Geometrical Attacks[J]. Journal of Computer Research and Development, 2007, 44(7): 1211-1218.
    [10]Zhao Jia, Zeng Xiaoyang, Han Jun, Wang Jing, and Chen Jun. VLSI Implementation of an AES Algorithm Resistant to Differential Power Analysis Attack[J]. Journal of Computer Research and Development, 2007, 44(3).

Catalog

    Article views (1135) PDF downloads (523) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return