• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Peng Zhenlian, Wang Jian, He Keqing, Tang Mingdong. A Requirements Elicitation Approach Based on Feature Model and Collaborative Filtering[J]. Journal of Computer Research and Development, 2016, 53(9): 2055-2066. DOI: 10.7544/issn1000-1239.2016.20150426
Citation: Peng Zhenlian, Wang Jian, He Keqing, Tang Mingdong. A Requirements Elicitation Approach Based on Feature Model and Collaborative Filtering[J]. Journal of Computer Research and Development, 2016, 53(9): 2055-2066. DOI: 10.7544/issn1000-1239.2016.20150426

A Requirements Elicitation Approach Based on Feature Model and Collaborative Filtering

More Information
  • Published Date: August 31, 2016
  • With the rapid development of Internet and Web service related technologies,developing software system on Internet is increasingly popular. Software development is a multi-knowledge-intensive process in which requirements elicitation plays a key role. Software systems deployed on Internet need to meet the needs of various kinds of customers and users who are geographically distributed,which increases the difficulties of software requirements elicitation. Meanwhile,more and more software systems that share similar functions are deployed on Internet,which provides a new way to elicit software requirements. Toward this end,recommender systems have been leveraged in the requirements elicitation to recommend missing features for software products by comparing the requirements descriptions of existing similar software systems. In order to improve the prediction accuracy of the recommended features of the software system,a requirements elicitation approach based on feature model and KNN (K-nearest neighbors) collaborative filtering recommendation system is proposed in this paper. An algorithm named FM_KNN is presented by utilizing constraint relations between features in KNN collaborative filtering recommendation system. Experiments conducted on a real data set and a simulated data set, by comparing the proposed FM_KNN with two existing methods, i.e., KNN and an approach that combines association rule mining with KNN, show that the proposed approach can achieve higher precision.
  • Related Articles

    [1]Li Jianhui, Shen Zhihong, Meng Xiaofeng. Scientific Big Data Management: Concepts, Technologies and System[J]. Journal of Computer Research and Development, 2017, 54(2): 235-247. DOI: 10.7544/issn1000-1239.2017.20160847
    [2]Shen Bilong, Zhao Ying, Huang Yan, Zheng Weimin. Survey on Dynamic Ride Sharing in Big Data Era[J]. Journal of Computer Research and Development, 2017, 54(1): 34-49. DOI: 10.7544/issn1000-1239.2017.20150729
    [3]ZhuWeiheng, YinJian, DengYuhui, LongShun, QiuShiding. Efficient Duplicate Detection Approach for High Dimensional Big Data[J]. Journal of Computer Research and Development, 2016, 53(3): 559-570. DOI: 10.7544/issn1000-1239.2016.20148218
    [4]Meng Xiaofeng, Du Zhijuan. Research on the Big Data Fusion: Issues and Challenges[J]. Journal of Computer Research and Development, 2016, 53(2): 231-246. DOI: 10.7544/issn1000-1239.2016.20150874
    [5]Li Weibang, Li Zhanhuai, Chen Qun, Jiang Tao, Liu Hailong, Pan Wei. Functional Dependencies Discovering in Distributed Big Data[J]. Journal of Computer Research and Development, 2015, 52(2): 282-294. DOI: 10.7544/issn1000-1239.2015.20140229
    [6]Meng Xiaofeng, Zhang Xiaojian. Big Data Privacy Management[J]. Journal of Computer Research and Development, 2015, 52(2): 265-281. DOI: 10.7544/issn1000-1239.2015.20140073
    [7]Liu Yahui, Zhang Tieying, Jin Xiaolong, Cheng Xueqi. Personal Privacy Protection in the Era of Big Data[J]. Journal of Computer Research and Development, 2015, 52(1): 229-247. DOI: 10.7544/issn1000-1239.2015.20131340
    [8]Meng Xiaofeng, Li Yong, Jonathan J. H. Zhu. Social Computing in the Era of Big Data: Opportunities and Challenges[J]. Journal of Computer Research and Development, 2013, 50(12): 2483-2491. DOI: 10.7544/issn1000-1239.2013.20130890
    [9]Li Jianzhong and Liu Xianmin. An Important Aspect of Big Data: Data Usability[J]. Journal of Computer Research and Development, 2013, 50(6): 1147-1162.
    [10]Meng Xiaofeng and Ci Xiang. Big Data Management: Concepts,Techniques and Challenges[J]. Journal of Computer Research and Development, 2013, 50(1): 146-169.
  • Cited by

    Periodical cited type(5)

    1. 廖鑫,黎懿熠,欧阳军林,周江盟,戴湘桃,秦拯. 一种基于深度学习的移动端隐写方法. 湖南大学学报(自然科学版). 2022(04): 18-25 .
    2. 何凤英. 改进卷积神经网络在图像隐写检测中的应用. 福建电脑. 2022(09): 1-6 .
    3. 黄思远,张敏情,柯彦,毕新亮. 基于显著性检测的图像隐写分析方法. 计算机应用. 2021(02): 441-448 .
    4. 黄思远,张敏情,柯彦,毕新亮. 基于自注意力机制的图像隐写分析方法. 计算机应用研究. 2021(04): 1190-1194 .
    5. 吴煌,李凯勇. 基于DCT域的数字图像隐写容量归一化方法. 计算机仿真. 2021(08): 207-211 .

    Other cited types(5)

Catalog

    Article views (1456) PDF downloads (650) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return