• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Peng Zhenlian, Wang Jian, He Keqing, Tang Mingdong. A Requirements Elicitation Approach Based on Feature Model and Collaborative Filtering[J]. Journal of Computer Research and Development, 2016, 53(9): 2055-2066. DOI: 10.7544/issn1000-1239.2016.20150426
Citation: Peng Zhenlian, Wang Jian, He Keqing, Tang Mingdong. A Requirements Elicitation Approach Based on Feature Model and Collaborative Filtering[J]. Journal of Computer Research and Development, 2016, 53(9): 2055-2066. DOI: 10.7544/issn1000-1239.2016.20150426

A Requirements Elicitation Approach Based on Feature Model and Collaborative Filtering

More Information
  • Published Date: August 31, 2016
  • With the rapid development of Internet and Web service related technologies,developing software system on Internet is increasingly popular. Software development is a multi-knowledge-intensive process in which requirements elicitation plays a key role. Software systems deployed on Internet need to meet the needs of various kinds of customers and users who are geographically distributed,which increases the difficulties of software requirements elicitation. Meanwhile,more and more software systems that share similar functions are deployed on Internet,which provides a new way to elicit software requirements. Toward this end,recommender systems have been leveraged in the requirements elicitation to recommend missing features for software products by comparing the requirements descriptions of existing similar software systems. In order to improve the prediction accuracy of the recommended features of the software system,a requirements elicitation approach based on feature model and KNN (K-nearest neighbors) collaborative filtering recommendation system is proposed in this paper. An algorithm named FM_KNN is presented by utilizing constraint relations between features in KNN collaborative filtering recommendation system. Experiments conducted on a real data set and a simulated data set, by comparing the proposed FM_KNN with two existing methods, i.e., KNN and an approach that combines association rule mining with KNN, show that the proposed approach can achieve higher precision.
  • Related Articles

    [1]Zhao Xiaoyang, Li Zhongnian, Wang Wenyu, Xu Xinzheng. ADIC: An Adaptive Disentangled CNN Classifier for Interpretable Image Recognition[J]. Journal of Computer Research and Development, 2023, 60(8): 1754-1767. DOI: 10.7544/issn1000-1239.202330231
    [2]Xie Kunpeng, Yi Dezhi, Liu Yiqing, Liu Hang, He Xinyu, Gong Cheng, Lu Ye. SAF-CNN:A Sparse Acceleration Framework of Convolutional Neural Network forEmbedded FPGAs[J]. Journal of Computer Research and Development, 2023, 60(5): 1053-1072. DOI: 10.7544/issn1000-1239.202220735
    [3]Yin Zhaoxia, Guo Hongnian, Du Yang, Ma Wenjing, Lü Wanli, Zhang Xinpeng. Multi-Domain Reversible Data Hiding in JPEG Images and Payload Distribution Algorithm[J]. Journal of Computer Research and Development, 2022, 59(8): 1831-1840. DOI: 10.7544/issn1000-1239.20210411
    [4]Liu Yanxiao, Wu Ping, Sun Qindong. Secret Image Sharing Schemes Based on Region Convolution Neural Network[J]. Journal of Computer Research and Development, 2021, 58(5): 1065-1074. DOI: 10.7544/issn1000-1239.2021.20200898
    [5]Wang Yangyang, He Hongjie, Chen Fan, Zhang Shanjun. Reversible Data Hiding in JPEG Images Based on Distortion-Extension Cost[J]. Journal of Computer Research and Development, 2020, 57(11): 2271-2282. DOI: 10.7544/issn1000-1239.2020.20200434
    [6]Xing Xinying, Ji Junzhong, Yao Yao. Brain Networks Classification Based on an Adaptive Multi-Task Convolutional Neural Networks[J]. Journal of Computer Research and Development, 2020, 57(7): 1449-1459. DOI: 10.7544/issn1000-1239.2020.20190186
    [7]Lü Guohao, Luo Siwei, Huang Yaping, Jiang Xinlan. A Novel Regularization Method Based on Convolution Neural Network[J]. Journal of Computer Research and Development, 2014, 51(9): 1891-1900. DOI: 10.7544/issn1000-1239.2014.20140266
    [8]Zhang Zhan, Liu Guangjie, Dai Yuewei, Wang Zhiquan. A Self-Adaptive Image Steganography Algorithm Based on Cover-Coding and Markov Model[J]. Journal of Computer Research and Development, 2012, 49(8): 1668-1675.
    [9]Yang Chunfang, Liu Fenlin, and Luo Xiangyang. Histograms Difference and Quantitative Steganalysis of JPEG Steganography Based on Relative Entropy[J]. Journal of Computer Research and Development, 2011, 48(8): 1563-1569.
    [10]Zheng Qingfang, Gao Wen. Adaptive Skin Detection in JPEG Compressed Images[J]. Journal of Computer Research and Development, 2006, 43(7): 1194-1200.

Catalog

    Article views (1458) PDF downloads (650) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return