• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Honglei, Shi Yuliang, Zhang Shidong, Zhou Zhongmin, Cui Lizhen. A Privacy Protection Mechanism for Dynamic Data Based on Partition-Confusion[J]. Journal of Computer Research and Development, 2016, 53(11): 2454-2464. DOI: 10.7544/issn1000-1239.2016.20150553
Citation: Zhang Honglei, Shi Yuliang, Zhang Shidong, Zhou Zhongmin, Cui Lizhen. A Privacy Protection Mechanism for Dynamic Data Based on Partition-Confusion[J]. Journal of Computer Research and Development, 2016, 53(11): 2454-2464. DOI: 10.7544/issn1000-1239.2016.20150553

A Privacy Protection Mechanism for Dynamic Data Based on Partition-Confusion

More Information
  • Published Date: October 31, 2016
  • Under the cloud computing environment, the privacy protection in the plaintext state can be realized, by the partition-confusion-based privacy protection mechanism which effectively combines tenants personalized privacy protection requirements and application performance. However, as the multi-tenant applications continue to run, on the one hand, the insertion, deletion, modification and other business operations of the tenant data can affect the distribution of the underlying data storage, making the relationships between the chunks in a significant risk of leakage due to the uneven data distribution; on the other hand, the attacker can still analyze a part of private information by the operation log of every chunk and the snapshot of the corresponding data in the local time. In response to these challenges, the present paper proposes a dynamic data privacy protection mechanism for partition confusion on the basis of the tripartite security interaction model. This mechanism can cache the data newly inserted and modified by a trusted third party and then group and upload it under the proper conditions; retaining key fragmentation in the deletion operation can ensure the privacy of the deleted and remained data; the falsifying data collection mechanism can achieve lower consumption of resources storage and optimize the application performance. The experimental result proves that the dynamic data privacy protection mechanism proposed in this paper has better feasibility and practicality.
  • Related Articles

    [1]Cheng Haodong, Han Meng, Zhang Ni, Li Xiaojuan, Wang Le. Closed High Utility Itemsets Mining over Data Stream Based on Sliding Window Model[J]. Journal of Computer Research and Development, 2021, 58(11): 2500-2514. DOI: 10.7544/issn1000-1239.2021.20200554
    [2]Zhang Xiaojian, Wang Miao, Meng Xiaofeng. An Accurate Method for Mining top-k Frequent Pattern Under Differential Privacy[J]. Journal of Computer Research and Development, 2014, 51(1): 104-114.
    [3]Lei Xiangxin, Yang Zhiying, Huang Shaoyin, Hu Yunfa. Mining Frequent Subtree on Paging XML Data Stream[J]. Journal of Computer Research and Development, 2012, 49(9): 1926-1936.
    [4]Liao Guoqiong, Wu Lingqin, Wan Changxuan. Frequent Patterns Mining over Uncertain Data Streams Based on Probability Decay Window Model[J]. Journal of Computer Research and Development, 2012, 49(5): 1105-1115.
    [5]Zhu Ranwei, Wang Peng, and Liu Majin. Algorithm Based on Counting for Mining Frequent Items over Data Stream[J]. Journal of Computer Research and Development, 2011, 48(10): 1803-1811.
    [6]Tong Yongxin, Zhang Yuanyuan, Yuan Mei, Ma Shilong, Yu Dan, Zhao Li. An Efficient Algorithm for Mining Compressed Sequential Patterns[J]. Journal of Computer Research and Development, 2010, 47(1): 72-80.
    [7]Liu Xuejun, Xu Hongbing, Dong Yisheng, Qian Jiangbo, Wang Yongli. Mining Frequent Closed Patterns from a Sliding Window over Data Streams[J]. Journal of Computer Research and Development, 2006, 43(10): 1738-1743.
    [8]Liu Xuejun, Xu Hongbing, Dong Yisheng, Wang Yongli, Qian Jiangbo. Mining Frequent Patterns in Data Streams[J]. Journal of Computer Research and Development, 2005, 42(12): 2192-2198.
    [9]Ma Haibing, Zhang Chenghong, Zhang Jin, and Hu Yunfa. Mining Frequent Patterns Based on IS\++-Tree Model[J]. Journal of Computer Research and Development, 2005, 42(4): 588-593.
    [10]Wang Wei, Zhou Haofeng, Yuan Qingqing, Lou Yubo, and Sui Baile. Mining Frequent Patterns Based on Graph Theory[J]. Journal of Computer Research and Development, 2005, 42(2): 230-235.

Catalog

    Article views (1298) PDF downloads (583) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return