• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhao Guozhen, Song Jinjing, Ge Yan, Liu Yongjin, Yao Lin, Wen Tao. Advances in Emotion Recognition Based on Physiological Big Data[J]. Journal of Computer Research and Development, 2016, 53(1): 80-92. DOI: 10.7544/issn1000-1239.2016.20150636
Citation: Zhao Guozhen, Song Jinjing, Ge Yan, Liu Yongjin, Yao Lin, Wen Tao. Advances in Emotion Recognition Based on Physiological Big Data[J]. Journal of Computer Research and Development, 2016, 53(1): 80-92. DOI: 10.7544/issn1000-1239.2016.20150636

Advances in Emotion Recognition Based on Physiological Big Data

More Information
  • Published Date: December 31, 2015
  • Affective computing (AC) is a new field of emotion research along with the development of computing technology and human-machine interaction technology. Emotion recognition is a crucial part of the AC research framework. Emotion recognition based on physiological signals provides richer information without deception than other techniques such as facial expression, tone of voice, and gestures. Many studies of emotion recognition have been conducted, but the classification accuracy is diverse due to variability in stimuli, emotion categories, devices, feature extraction and machine learning algorithms. This paper reviews all works that cited DEAP dataset (a public available dataset which uses music video to induce emotion and record EEG and peripheral physiological signals) and introduces detailed methods and algorithms on feature extraction, normalization, dimension reduction, emotion classification, and cross validation. Eventually, this work presents the application of AC on game development, multimedia production, interactive experience, and social network as well as the current limitations and the direction of future investigation.
  • Related Articles

    [1]Zeng Weixin, Zhao Xiang, Tang Jiuyang, Tan Zhen, Wang Wei. Iterative Entity Alignment via Re-Ranking[J]. Journal of Computer Research and Development, 2020, 57(7): 1460-1471. DOI: 10.7544/issn1000-1239.2020.20190643
    [2]Dai Chenchao, Wang Hongyuan, Ni Tongguang, Chen Shoubing. Person Re-Identification Based on Deep Convolutional Generative Adversarial Network and Expanded Neighbor Reranking[J]. Journal of Computer Research and Development, 2019, 56(8): 1632-1641. DOI: 10.7544/issn1000-1239.2019.20190195
    [3]Du Ruizhong, Li Mingyue, Tian Junfeng. Multi-keyword Ranked Ciphertext Retrieval Scheme Based on Clustering Index[J]. Journal of Computer Research and Development, 2019, 56(3): 555-565. DOI: 10.7544/issn1000-1239.2019.20170830
    [4]Guo Jiafeng, Fan Yixing. Exploration on Neural Information Retrieval Framework[J]. Journal of Computer Research and Development, 2018, 55(9): 1987-1999. DOI: 10.7544/issn1000-1239.2018.20180133
    [5]Zhong Qi, Wang Jing, Guan Xuetao, Huang Tao, Wang Keyi. Data Object Scale Aware Rank-Level Memory Allocation[J]. Journal of Computer Research and Development, 2014, 51(3): 672-680.
    [6]Liu Xiping, Wan Changxuan, and Liu Dexi. Effective XML Vague Content and Structure Retrieval and Scoring[J]. Journal of Computer Research and Development, 2010, 47(6): 1070-1078.
    [7]Xu Cunlu, Chen Yanqiu, Lu Hanqing. Statistical Landscape Features for Texture Retrieval[J]. Journal of Computer Research and Development, 2006, 43(4): 702-707.
    [8]Xing Qiang, Yuan Baozong, and Tang Xiaofang. A Fast Image Retrieval Method Based on Weighted Chromaticity Histogram[J]. Journal of Computer Research and Development, 2005, 42(11): 1903-1910.
    [9]Ru Liyun, Ma Shaoping, and Lu Jing. Feature Fusion Based on the Average Precision in Image Retrieval[J]. Journal of Computer Research and Development, 2005, 42(9): 1640-1646.
    [10]Zhang Min, Lin Chuan, and Ma Shaoping. Dynamic Parameter Learning Approach for Information Retrieval with Genetic Algorithm[J]. Journal of Computer Research and Development, 2005, 42(3).

Catalog

    Article views (2822) PDF downloads (2046) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return