• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Lei, Zhang Yi. Big Data Analysis by Infinite Deep Neural Networks[J]. Journal of Computer Research and Development, 2016, 53(1): 68-79. DOI: 10.7544/issn1000-1239.2016.20150663
Citation: Zhang Lei, Zhang Yi. Big Data Analysis by Infinite Deep Neural Networks[J]. Journal of Computer Research and Development, 2016, 53(1): 68-79. DOI: 10.7544/issn1000-1239.2016.20150663

Big Data Analysis by Infinite Deep Neural Networks

More Information
  • Published Date: December 31, 2015
  • Deep neural networks (DNNs) and their learning algorithms are well known in the academic community and industry as the most successful methods for big data analysis. Compared with traditional methods, deep learning methods use data-driven and can extract features (knowledge) automatically from data. Deep learning methods have significant advantages in analyzing unstructured, unknown and varied model and cross field big data. At present, the most widely used deep neural networks in big data analysis are feedforward neural networks (FNNs). They work well in extracting the correlation from static data and suiting for data application scenarios based on classification. But limited by its intrinsic structure, the ability of feedforward neural networks to extract time sequence features is weak. Infinite deep neural networks, i.e. recurrent neural networks (RNNs) are dynamical systems essentially. Their essential character is that the states of the networks change with time and couple the time parameter. Hence they are very suit for extracting time sequence features. It means that infinite deep neural networks can perform the prediction of big data. If extending recurrent structure of recurrent neural networks in the time dimension, the depth of networks can be infinite with time running, so they are called infinite deep neural networks. In this paper, we focus on the topology and some learning algorithms of infinite deep neural networks, and introduce some successful applications in speech recognition and image understanding.
  • Related Articles

    [1]Wei Jia, Zhang Xingjun, Wang Longxiang, Zhao Mingqiang, Dong Xiaoshe. MC2 Energy Consumption Model for Massively Distributed Data Parallel Training of Deep Neural Network[J]. Journal of Computer Research and Development, 2024, 61(12): 2985-3004. DOI: 10.7544/issn1000-1239.202330164
    [2]Li Jianhui, Shen Zhihong, Meng Xiaofeng. Scientific Big Data Management: Concepts, Technologies and System[J]. Journal of Computer Research and Development, 2017, 54(2): 235-247. DOI: 10.7544/issn1000-1239.2017.20160847
    [3]Shen Bilong, Zhao Ying, Huang Yan, Zheng Weimin. Survey on Dynamic Ride Sharing in Big Data Era[J]. Journal of Computer Research and Development, 2017, 54(1): 34-49. DOI: 10.7544/issn1000-1239.2017.20150729
    [4]Meng Xiaofeng, Du Zhijuan. Research on the Big Data Fusion: Issues and Challenges[J]. Journal of Computer Research and Development, 2016, 53(2): 231-246. DOI: 10.7544/issn1000-1239.2016.20150874
    [5]Li Weibang, Li Zhanhuai, Chen Qun, Jiang Tao, Liu Hailong, Pan Wei. Functional Dependencies Discovering in Distributed Big Data[J]. Journal of Computer Research and Development, 2015, 52(2): 282-294. DOI: 10.7544/issn1000-1239.2015.20140229
    [6]Meng Xiaofeng, Zhang Xiaojian. Big Data Privacy Management[J]. Journal of Computer Research and Development, 2015, 52(2): 265-281. DOI: 10.7544/issn1000-1239.2015.20140073
    [7]Liu Yahui, Zhang Tieying, Jin Xiaolong, Cheng Xueqi. Personal Privacy Protection in the Era of Big Data[J]. Journal of Computer Research and Development, 2015, 52(1): 229-247. DOI: 10.7544/issn1000-1239.2015.20131340
    [8]Meng Xiaofeng, Li Yong, Jonathan J. H. Zhu. Social Computing in the Era of Big Data: Opportunities and Challenges[J]. Journal of Computer Research and Development, 2013, 50(12): 2483-2491. DOI: 10.7544/issn1000-1239.2013.20130890
    [9]Li Jianzhong and Liu Xianmin. An Important Aspect of Big Data: Data Usability[J]. Journal of Computer Research and Development, 2013, 50(6): 1147-1162.
    [10]Meng Xiaofeng and Ci Xiang. Big Data Management: Concepts,Techniques and Challenges[J]. Journal of Computer Research and Development, 2013, 50(1): 146-169.

Catalog

    Article views (2856) PDF downloads (2599) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return