• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Xiangnan, Zhang Guangyan, Li Qiang, Zheng Weimin. A Survey on the Approaches of Building Solid State Disk Arrays[J]. Journal of Computer Research and Development, 2016, 53(9): 1893-1905. DOI: 10.7544/issn1000-1239.2016.20150910
Citation: Li Xiangnan, Zhang Guangyan, Li Qiang, Zheng Weimin. A Survey on the Approaches of Building Solid State Disk Arrays[J]. Journal of Computer Research and Development, 2016, 53(9): 1893-1905. DOI: 10.7544/issn1000-1239.2016.20150910

A Survey on the Approaches of Building Solid State Disk Arrays

More Information
  • Published Date: August 31, 2016
  • Flash-based solid state disks (SSDs) use flash memory chips as their storage media, which have the features of non-volatility, small size, light weight, high shock resistance, high performance, and low power consumption. Single SSDs have the drawbacks of poor random write performance and limited erase endurance. Organizing multiple SSDs with the RAID technology is promising in delivering high reliability, large capacity and high performance. However, researchers have demonstrated that applying RAID algorithms to SSDs directly does not work well and have proposed some SSD-aware RAID algorithms. In this paper, we first analyze the drawbacks of flash-based solid state disks and the RAID technology, and use performance, reliability and price as the evaluation criteria of the approaches to building SSD arrays, and choose random writes, small writes, garbage collection, load balance, erase/program cycles, wear leveling and redundancy levels as the analysis metrics. Then, we analyze and compare the advantages and disadvantages of two types of array building approaches on the disk level and the flash-chip level respectively. Finally, we summarize those different approaches and point out prospective research directions in the future.
  • Related Articles

    [1]Li Jianhui, Shen Zhihong, Meng Xiaofeng. Scientific Big Data Management: Concepts, Technologies and System[J]. Journal of Computer Research and Development, 2017, 54(2): 235-247. DOI: 10.7544/issn1000-1239.2017.20160847
    [2]Shen Bilong, Zhao Ying, Huang Yan, Zheng Weimin. Survey on Dynamic Ride Sharing in Big Data Era[J]. Journal of Computer Research and Development, 2017, 54(1): 34-49. DOI: 10.7544/issn1000-1239.2017.20150729
    [3]ZhuWeiheng, YinJian, DengYuhui, LongShun, QiuShiding. Efficient Duplicate Detection Approach for High Dimensional Big Data[J]. Journal of Computer Research and Development, 2016, 53(3): 559-570. DOI: 10.7544/issn1000-1239.2016.20148218
    [4]Meng Xiaofeng, Du Zhijuan. Research on the Big Data Fusion: Issues and Challenges[J]. Journal of Computer Research and Development, 2016, 53(2): 231-246. DOI: 10.7544/issn1000-1239.2016.20150874
    [5]Li Weibang, Li Zhanhuai, Chen Qun, Jiang Tao, Liu Hailong, Pan Wei. Functional Dependencies Discovering in Distributed Big Data[J]. Journal of Computer Research and Development, 2015, 52(2): 282-294. DOI: 10.7544/issn1000-1239.2015.20140229
    [6]Meng Xiaofeng, Zhang Xiaojian. Big Data Privacy Management[J]. Journal of Computer Research and Development, 2015, 52(2): 265-281. DOI: 10.7544/issn1000-1239.2015.20140073
    [7]Liu Yahui, Zhang Tieying, Jin Xiaolong, Cheng Xueqi. Personal Privacy Protection in the Era of Big Data[J]. Journal of Computer Research and Development, 2015, 52(1): 229-247. DOI: 10.7544/issn1000-1239.2015.20131340
    [8]Meng Xiaofeng, Li Yong, Jonathan J. H. Zhu. Social Computing in the Era of Big Data: Opportunities and Challenges[J]. Journal of Computer Research and Development, 2013, 50(12): 2483-2491. DOI: 10.7544/issn1000-1239.2013.20130890
    [9]Li Jianzhong and Liu Xianmin. An Important Aspect of Big Data: Data Usability[J]. Journal of Computer Research and Development, 2013, 50(6): 1147-1162.
    [10]Meng Xiaofeng and Ci Xiang. Big Data Management: Concepts,Techniques and Challenges[J]. Journal of Computer Research and Development, 2013, 50(1): 146-169.
  • Cited by

    Periodical cited type(5)

    1. 廖鑫,黎懿熠,欧阳军林,周江盟,戴湘桃,秦拯. 一种基于深度学习的移动端隐写方法. 湖南大学学报(自然科学版). 2022(04): 18-25 .
    2. 何凤英. 改进卷积神经网络在图像隐写检测中的应用. 福建电脑. 2022(09): 1-6 .
    3. 黄思远,张敏情,柯彦,毕新亮. 基于显著性检测的图像隐写分析方法. 计算机应用. 2021(02): 441-448 .
    4. 黄思远,张敏情,柯彦,毕新亮. 基于自注意力机制的图像隐写分析方法. 计算机应用研究. 2021(04): 1190-1194 .
    5. 吴煌,李凯勇. 基于DCT域的数字图像隐写容量归一化方法. 计算机仿真. 2021(08): 207-211 .

    Other cited types(5)

Catalog

    Article views (1447) PDF downloads (772) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return