• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Xuejun, Xu Jia, Zhu Erzhou, Zhang Yiwen. A Novel Computation Method for Adaptive Inertia Weight of Task Scheduling Algorithm[J]. Journal of Computer Research and Development, 2016, 53(9): 1990-1999. DOI: 10.7544/issn1000-1239.2016.20151175
Citation: Li Xuejun, Xu Jia, Zhu Erzhou, Zhang Yiwen. A Novel Computation Method for Adaptive Inertia Weight of Task Scheduling Algorithm[J]. Journal of Computer Research and Development, 2016, 53(9): 1990-1999. DOI: 10.7544/issn1000-1239.2016.20151175

A Novel Computation Method for Adaptive Inertia Weight of Task Scheduling Algorithm

More Information
  • Published Date: August 31, 2016
  • Particle swarm optimization (PSO) is a primary intelligence algorithm to solve task scheduling problem for workflow systems in cloud computing. The inertia weight is one of the most important parameters to achieve a balance between the global and local search in PSO algorithm. However, traditional adaptive inertia weight-based PSO task scheduling algorithms usually get local optimal and cause longer execution time and higher cost for scheduling plan. The traditional adaptive inertia weight does not comprehensively represent the information of particle position, and then cannot make a suitable balance between global and local search. Hence, a novel computation method for adaptive inertia weight is proposed to improve the computation method of success value of each particle. This method shows the position state of each particle more accurately and then improves the adaptability of inertia weight by comparing the fitness of each particle with the global best particle. Then a new inertia weight-based PSO algorithm is presented to solve task scheduling problem for cloud workflow systems. The novel weight can adjust the particle velocity more correctly so that the algorithm avoids premature convergence by a proper balance between local and global search. Comparing our new adaptive inertia weight with other five traditional inertia weights (viz. constant, index decreasing, linear decreasing, random, and adaptive inertia weight), the results show that our new adaptive inertia weight-based scheduling algorithm can always achieve stable convergence speed, the optimal fitness and execution cost of the scheduling plan (i.e. roughly 18% reduction of execution cost).
  • Related Articles

    [1]Lu Yuxuan, Kong Lanju, Zhang Baochen, Min Xinping. MC-RHotStuff: Multi-Chain Oriented HotStuff Consensus Mechanism Based on Reputation[J]. Journal of Computer Research and Development, 2024, 61(6): 1559-1572. DOI: 10.7544/issn1000-1239.202330195
    [2]Yu Xiao, Liu Hui, Lin Yuxiu, Zhang Caiming. Consensus Guided Auto-Weighted Multi-View Clustering[J]. Journal of Computer Research and Development, 2022, 59(7): 1496-1508. DOI: 10.7544/issn1000-1239.20210126
    [3]Yang Hongzhang, Yang Yahui, Tu Yaofeng, Sun Guangyu, Wu Zhonghai. Proactive Fault Tolerance Based on “Collection—Prediction—Migration—Feedback” Mechanism[J]. Journal of Computer Research and Development, 2020, 57(2): 306-317. DOI: 10.7544/issn1000-1239.2020.20190549
    [4]Wang Zuan, Tian Youliang, Yue Chaoyue, Zhang Duo. Consensus Mechanism Based on Threshold Cryptography Scheme[J]. Journal of Computer Research and Development, 2019, 56(12): 2671-2683. DOI: 10.7544/issn1000-1239.2019.20190053
    [5]Wei Songjie, Li Shuai, Mo Bing, Wang Jiahe. Regional Cooperative Authentication Protocol for LEO Satellite Networks Based on Consensus Mechanism[J]. Journal of Computer Research and Development, 2018, 55(10): 2244-2255. DOI: 10.7544/issn1000-1239.2018.20180431
    [6]Liu Yiran, Ke Junming, Jiang Han, Song Xiangfu. Improvement of the PoS Consensus Mechanism in Blockchain Based on Shapley Value[J]. Journal of Computer Research and Development, 2018, 55(10): 2208-2218. DOI: 10.7544/issn1000-1239.2018.20180439
    [7]Ye Songtao, Lin Yaping, Hu Yupeng, Zhou Siwang, You Zhiqiang. A Faulty Sensor Node Tolerance Algorithm Based on Cut Point Set[J]. Journal of Computer Research and Development, 2009, 46(12): 2117-2125.
    [8]Han Jianjun, Gan Lu, Ruan Youlin, Li Qinghua, Abbas A.Essa. Real-Time Dynamic Scheduling Algorithms for the Savings of Power Consumption and Fault Tolerance in Multi-Processor Computing Environment[J]. Journal of Computer Research and Development, 2008, 45(4): 706-715.
    [9]Cheng Xin, Liu Hongwei, Dong Jian, Yang Xiaozong. A Fault Tolerance Deadlock Detection/Resolution Algorithm for the AND-OR Model[J]. Journal of Computer Research and Development, 2007, 44(5): 798-805.
    [10]Luo Wei, Yang Fumin, Pang Liping, and Li Jun. A Real-Time Fault-Tolerant Scheduling Algorithm for Distributed Systems Based on Deferred Active Backup-Copy[J]. Journal of Computer Research and Development, 2007, 44(3).
  • Cited by

    Periodical cited type(10)

    1. 王娟,努尔买买提·黑力力. 基于字典分级和属性加权的密文排序检索方案. 新疆大学学报(自然科学版)(中英文). 2024(02): 246-256 .
    2. 刘佩恒,张劼,张华,张欣,王梦迪. 支持语义扩展的多关键词密文检索方案. 中国电子科学研究院学报. 2024(01): 42-52 .
    3. 於湘涛,温刚,刘冉,舒斐,刘威麟,赛峰. 电力调度自动化网络安全防护技术研究. 微型电脑应用. 2024(12): 187-190+198 .
    4. 刘宁,牛佳乐,郑剑,李思岑,王丹丹. 基于向量空间模型的信息资源关键词智能检索工具的研究. 自动化技术与应用. 2023(10): 105-107+161 .
    5. 管小明,李宏俊. 基于支持可验证的物联网感知层信息加密仿真. 计算机仿真. 2023(11): 357-360+441 .
    6. 黄健,铁治欣,宋滢锟. 云存储环境中多关键词加密排序搜索方法研究. 软件导刊. 2022(01): 226-232 .
    7. 牛淑芬,张美玲,周思玮,闫森. 面向移动终端的密文可验证属性基可搜索加密方案. 计算机工程与科学. 2022(11): 1941-1950 .
    8. 陈红鹏,樊增辉. 基于数据加密技术的海外数据中心拓扑架构设计. 微型电脑应用. 2022(12): 204-208 .
    9. 王娜,郑坤,付俊松,李剑. 基于分块的移动边缘计算密文检索方法. 通信学报. 2020(07): 95-102 .
    10. 霍颖瑜. 基于混沌算法的高端装备指令数据加密方法. 兵器装备工程学报. 2020(11): 190-193 .

    Other cited types(14)

Catalog

    Article views (1784) PDF downloads (890) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return