• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Li Zhetao, Zang Lang, Tian Shujuan, Li Renfa. Data Collection Method in Clustering Network Based on Hybrid Compressive Sensing[J]. Journal of Computer Research and Development, 2017, 54(3): 493-501. DOI: 10.7544/issn1000-1239.2017.20150885
Citation: Li Zhetao, Zang Lang, Tian Shujuan, Li Renfa. Data Collection Method in Clustering Network Based on Hybrid Compressive Sensing[J]. Journal of Computer Research and Development, 2017, 54(3): 493-501. DOI: 10.7544/issn1000-1239.2017.20150885

Data Collection Method in Clustering Network Based on Hybrid Compressive Sensing

More Information
  • Published Date: February 28, 2017
  • In order to reduce the number of transmissions and balance the network load in wireless sensor network, this paper presents a data collection method by using hybrid compressive sensing (cs) in clustering network. Firstly we choose some nodes that are close to the temporary cluster-centroid as the candidate cluster head(CH), secondly determine the CH nodes on the basis of the distance of the candidate nodes to determined CH orderly. Then the common sensor nodes join their nearest cluster. Lastly we build a data transmission tree root of sink node that connects to all CHs greedy. When the number of data transmissions is higher than the threshold, nodes transmit data by using CS. On scenarios of compressive ratio equals 10,the simulation results demonstrate that the number of transmissions for the proposed method is 75% and 65% less than that of Clustering without CS and SPT without CS, 35% and 20% less than that of SPT with Hybrid CS and Clustering with Hybrid CS; The standard deviation of nodes transmissions for the proposed method is 62% and 81% less than that of Clustering without CS and SPT without CS, 41% and 19% less than that of SPT with Hybrid CS and Clustering with Hybrid CS.
  • Related Articles

    [1]Wang Chuang, Ding Yan, Huang Chenlin, Song Liantao. Bitsliced Optimization of SM4 Algorithm with the SIMD Instruction Set[J]. Journal of Computer Research and Development, 2024, 61(8): 2097-2109. DOI: 10.7544/issn1000-1239.202220531
    [2]Li Maowen, Qu Guoyuan, Wei Dazhou, Jia Haipeng. Performance Optimization of Neural Network Convolution Based on GPU Platform[J]. Journal of Computer Research and Development, 2022, 59(6): 1181-1191. DOI: 10.7544/issn1000-1239.20200985
    [3]Shen Jie, Long Biao, Jiang Hao, Huang Chun. Implementation and Optimization of Vector Trigonometric Functions on Phytium Processors[J]. Journal of Computer Research and Development, 2020, 57(12): 2610-2620. DOI: 10.7544/issn1000-1239.2020.20190721
    [4]Zhang Jun, Xie Jingcheng, Shen Fanfan, Tan Hai, Wang Lümeng, He Yanxiang. Performance Optimization of Cache Subsystem in General Purpose Graphics Processing Units: A Survey[J]. Journal of Computer Research and Development, 2020, 57(6): 1191-1207. DOI: 10.7544/issn1000-1239.2020.20200113
    [5]Sun Chang’ai, Wang Zhen, Pan Lin. Optimized Mutation Testing Techniques for WS-BPEL Programs[J]. Journal of Computer Research and Development, 2019, 56(4): 895-905. DOI: 10.7544/issn1000-1239.2019.20180037
    [6]Liu Song, Wu Weiguo, Zhao Bo, Jiang Qing. Loop Tiling for Optimization of Locality and Parallelism[J]. Journal of Computer Research and Development, 2015, 52(5): 1160-1176. DOI: 10.7544/issn1000-1239.2015.20131387
    [7]Wang Yongxian, Zhang Lilun, Che Yonggang, Xu Chuanfu, Liu Wei, Cheng Xinghua. Heterogeneous Computing and Optimization on Tianhe-2,Supercomputer System for High-Order Accurate CFD Applications[J]. Journal of Computer Research and Development, 2015, 52(4): 833-842. DOI: 10.7544/issn1000-1239.2015.20131922
    [8]Gu Rong, Yan Jinshuang, Yang Xiaoliang, Yuan Chunfeng, and Huang Yihua. Performance Optimization for Short Job Execution in Hadoop MapReduce[J]. Journal of Computer Research and Development, 2014, 51(6): 1270-1280.
    [9]Luo Hongbing, Zhang Xiaoxia, Wang Wei, and Wu Linping. Instruction Level Parallel Optimizing for Scientific Computing Application[J]. Journal of Computer Research and Development, 2014, 51(6): 1263-1269.
    [10]Li Lei, Niu Chunlei, Chen Ningjiang, Wei Jun. A High-Performance Strategy for Optimizing Web Services[J]. Journal of Computer Research and Development, 2007, 44(7): 1191-1198.
  • Cited by

    Periodical cited type(5)

    1. 郭炜杰,包晓安. 基于Ajax的智能终端一次性口令身份认证仿真. 计算机仿真. 2023(07): 176-179 .
    2. 罗娟,章翠君,王纯. 基于众包的多楼层定位方法. 计算机研究与发展. 2022(02): 452-462 . 本站查看
    3. 胡美慧,向志威. 基于离散余弦变换的电力营销系统客户权限自动识别方法. 自动化技术与应用. 2022(05): 125-129 .
    4. 赵鹏飞. 港口身份智能识别系统设计与实现. 舰船科学技术. 2021(14): 202-204 .
    5. 倪志文,马小虎,孙霄,边丽娜. 结合显式和隐式特征交互的深度融合模型. 计算机工程. 2020(03): 87-92+98 .

    Other cited types(9)

Catalog

    Article views (1380) PDF downloads (569) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return