• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Yu Ruiyun, Wang Pengfei, Bai Zhihong, Wang Xingwei. Participatory Sensing: People-Centric Smart Sensing and Computing[J]. Journal of Computer Research and Development, 2017, 54(3): 457-473. DOI: 10.7544/issn1000-1239.2017.20151021
Citation: Yu Ruiyun, Wang Pengfei, Bai Zhihong, Wang Xingwei. Participatory Sensing: People-Centric Smart Sensing and Computing[J]. Journal of Computer Research and Development, 2017, 54(3): 457-473. DOI: 10.7544/issn1000-1239.2017.20151021

Participatory Sensing: People-Centric Smart Sensing and Computing

More Information
  • Published Date: February 28, 2017
  • More and more mobile devices are equipped with various kinds of sensors, and wireless mobile networks, such as 4G, Wi-Fi, have been largely developed and popularized in recent years. All of these factors promote the development of participatory sensing which is also called urban sensing, user-centric sensing, mobile crowd sensing. Participatory sensing can overcome the weakness of wireless sensor networks which are expensive and hard to deploy on a large scale. The participatory sensing system utilizes embedded sensors, social networks, user mobile usage behaviors and other sources where sensing data is generated and recorded in smart mobile devices to sense the physical environment, society and personality information etc. The sensing data is collected, transported and analyzed by the participatory sensing server, and processed useful sensing information is sent to data consumers. Participatory sensing is of great significance in achieving the concept of smart city, ubiquitous computing and Internet of things. The related concepts of participatory sensing and prototypes are introduced first in the paper. Then, the current hot research fields of participatory sensing, such as the participatory sensing prototype design, sensing data related problems, incentive mechanisms, privacy preserving, malicious behaviors, and frameworks in different wireless networks are elaborated in this paper. Finally, a general research method of studying participatory sensing is given.
  • Cited by

    Periodical cited type(12)

    1. 罗怡. 基于传感器技术的心理健康自动监管与测评研究. 自动化与仪器仪表. 2023(07): 240-243 .
    2. 金敏. 基于虚拟现实技术的心理健康状况测评系统. 信息技术. 2023(11): 17-21+27 .
    3. 孙永明,杨进. 自适应插值与特征压缩的小样本数据分类研究. 计算机工程与应用. 2022(01): 106-112 .
    4. 任倩,王博. 护理专业实习生心理健康风险评估研究. 职业卫生与应急救援. 2022(01): 32-38 .
    5. 李盼盼,梁丰,彭虎军. 基于数据感知技术的心理健康状态实时跟踪研究. 电子设计工程. 2022(12): 138-142 .
    6. 姜灵芝. 基于大数据分析技术的心理健康智能评测系统设计. 微型电脑应用. 2022(07): 30-34 .
    7. 吴苏礼,雷双媛,王冠卓,刘大旭. 基于传感器感知数据的心理健康状态实时跟踪研究. 微型电脑应用. 2022(08): 43-46 .
    8. 孙锐,刘少楠,付宏鹏. 基于感知数据的大学生心理可承受风险自动评估系统. 现代电子技术. 2021(13): 164-168 .
    9. 李亚玲,李飞. 基于多特征融合的大学生心理健康智能评测系统设计. 现代电子技术. 2021(18): 149-152 .
    10. 陶涛,孙玉娥,陈冬梅,杨文建,黄河,罗永龙. 一种基于智能手机传感器数据的地图轮廓生成方法. 计算机研究与发展. 2020(07): 1490-1507 . 本站查看
    11. 孙永明,杨进. 基于BSTL与XGDT算法对多级别心理压力的评估. 经济数学. 2020(04): 148-158 .
    12. 梁丰,李盼盼,彭虎军. 感知数据的大学生心理可承受风险评估系统. 信息技术. 2020(12): 28-32 .

    Other cited types(3)

Catalog

    Article views (1913) PDF downloads (815) Cited by(15)
    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return