• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Xiang Xiaojia, Zhao Xiaofang, Liu Yang, Gong Guanjun, Zhang Han. An Orthogonal Decomposition Based Design Method and Implementation for Big Data Processing System[J]. Journal of Computer Research and Development, 2017, 54(5): 1097-1108. DOI: 10.7544/issn1000-1239.2017.20151062
Citation: Xiang Xiaojia, Zhao Xiaofang, Liu Yang, Gong Guanjun, Zhang Han. An Orthogonal Decomposition Based Design Method and Implementation for Big Data Processing System[J]. Journal of Computer Research and Development, 2017, 54(5): 1097-1108. DOI: 10.7544/issn1000-1239.2017.20151062

An Orthogonal Decomposition Based Design Method and Implementation for Big Data Processing System

More Information
  • Published Date: April 30, 2017
  • Big data stimulates a revolution in data storage and processing field, resulting in the thriving of big data processing systems, such as Hadoop, Spark, etc, which build a brand new platform with platform independence, high throughput, and good scalability. On the other hand, substrate platform underpinning these systems are ignored because their designation and optimization mainly focus on the processing model and related frameworks & algorithms. We here present a new loose coupled, platform dependent big data processing system designation & optimization method which can exploit the power of underpinning platform, including OS and hardware, and get more benefit from these local infrastructures. Furthermore, based on local OS and hardware, two strategies, that is, lock-free based storage and super optimization based data processing execution engine, are proposed. Directed by the aforementioned methods and strategies, we present Arion, a modified version of vanilla Hadoop, which show us a new promising way for Hadoop optimization, meanwhile keeping its high scalability and upper layer platform independence. Our experiments prove that the prototype Arion can accelerate big data processing jobs up to 7.7%.
  • Related Articles

    [1]Zhang Xuguang, Chen Mingkai, Wei Xin. Ubiquitous Video Transmission Scheduling Supported by Computing Power Network[J]. Journal of Computer Research and Development, 2023, 60(4): 786-796. DOI: 10.7544/issn1000-1239.202330005
    [2]Xiang Chaocan, Cheng Wenhui, Zhang Zhao, Jiao Xianlong, Qu Yuben, Chen Chao, Dai Haipeng. Intelligent Edge Computing-Empowered Adaptive Urban Traffic Sensing Data Recovery[J]. Journal of Computer Research and Development, 2023, 60(3): 619-634. DOI: 10.7544/issn1000-1239.202110962
    [3]Li Yin, Chen Yong, Zhao Jingxin, Yue Xinghui, Zheng Chen, Wu Yanjun, Wu Gaofei. Survey of Ubiquitous Computing Security[J]. Journal of Computer Research and Development, 2022, 59(5): 1054-1081. DOI: 10.7544/issn1000-1239.20211248
    [4]Wang Taochun, Jin Xin, Lü Chengmei, Chen Fulong, Zhao Chuanxin. Privacy Preservation Method of Data Aggregation in Mobile Crowd Sensing[J]. Journal of Computer Research and Development, 2020, 57(11): 2337-2347. DOI: 10.7544/issn1000-1239.2020.20190579
    [5]Jing Yao, Guo Bin, Chen Huihui, Yue Chaogang, Wang Zhu, Yu Zhiwen. CrowdTracker: Object Tracking Using Mobile Crowd Sensing[J]. Journal of Computer Research and Development, 2019, 56(2): 328-337. DOI: 10.7544/issn1000-1239.2019.20170808
    [6]Liu Jingjie, Nie Lei. Bayesian Current Disaggregation: Sensing the Current Waveforms of Household Appliances Using One Sensor[J]. Journal of Computer Research and Development, 2018, 55(3): 662-672. DOI: 10.7544/issn1000-1239.2018.20150311
    [7]Lin Xin, Li Shanping, Yang Zhaohui, Xu Jian. A Reasoning-Oriented Context Replacement Algorithm in Pervasive Computing[J]. Journal of Computer Research and Development, 2009, 46(4): 549-557.
    [8]Sun Peigang, Zhao Hai, Han Guangjie, Zhang Xiyuan, Zhu Jian. Chaos Triangle Compliant Location Reference Node Selection Algorithm[J]. Journal of Computer Research and Development, 2007, 44(12): 1987-1995.
    [9]Tang Lei, Liao Yuan, Li Mingshu, Huai Xiaoyong. The Dynamic Deployment Problem and the Algorithm of Service Component for Pervasive Computing[J]. Journal of Computer Research and Development, 2007, 44(5): 815-822.
    [10]Li Rui and Li Renfa. A Survey of Context-Aware Computing and Its System Infrastructure[J]. Journal of Computer Research and Development, 2007, 44(2): 269-276.
  • Cited by

    Periodical cited type(12)

    1. 罗怡. 基于传感器技术的心理健康自动监管与测评研究. 自动化与仪器仪表. 2023(07): 240-243 .
    2. 金敏. 基于虚拟现实技术的心理健康状况测评系统. 信息技术. 2023(11): 17-21+27 .
    3. 孙永明,杨进. 自适应插值与特征压缩的小样本数据分类研究. 计算机工程与应用. 2022(01): 106-112 .
    4. 任倩,王博. 护理专业实习生心理健康风险评估研究. 职业卫生与应急救援. 2022(01): 32-38 .
    5. 李盼盼,梁丰,彭虎军. 基于数据感知技术的心理健康状态实时跟踪研究. 电子设计工程. 2022(12): 138-142 .
    6. 姜灵芝. 基于大数据分析技术的心理健康智能评测系统设计. 微型电脑应用. 2022(07): 30-34 .
    7. 吴苏礼,雷双媛,王冠卓,刘大旭. 基于传感器感知数据的心理健康状态实时跟踪研究. 微型电脑应用. 2022(08): 43-46 .
    8. 孙锐,刘少楠,付宏鹏. 基于感知数据的大学生心理可承受风险自动评估系统. 现代电子技术. 2021(13): 164-168 .
    9. 李亚玲,李飞. 基于多特征融合的大学生心理健康智能评测系统设计. 现代电子技术. 2021(18): 149-152 .
    10. 陶涛,孙玉娥,陈冬梅,杨文建,黄河,罗永龙. 一种基于智能手机传感器数据的地图轮廓生成方法. 计算机研究与发展. 2020(07): 1490-1507 . 本站查看
    11. 孙永明,杨进. 基于BSTL与XGDT算法对多级别心理压力的评估. 经济数学. 2020(04): 148-158 .
    12. 梁丰,李盼盼,彭虎军. 感知数据的大学生心理可承受风险评估系统. 信息技术. 2020(12): 28-32 .

    Other cited types(3)

Catalog

    Article views (1177) PDF downloads (604) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return