• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Yong, Li Feiteng, Wang Yujie. Indoor Positioning Algorithm for WLAN Based on KDDA and SFLA-LSSVR[J]. Journal of Computer Research and Development, 2017, 54(5): 979-985. DOI: 10.7544/issn1000-1239.2017.20160025
Citation: Zhang Yong, Li Feiteng, Wang Yujie. Indoor Positioning Algorithm for WLAN Based on KDDA and SFLA-LSSVR[J]. Journal of Computer Research and Development, 2017, 54(5): 979-985. DOI: 10.7544/issn1000-1239.2017.20160025

Indoor Positioning Algorithm for WLAN Based on KDDA and SFLA-LSSVR

More Information
  • Published Date: April 30, 2017
  • The time-varying received signal strength (RSS) degrades the indoor positioning accuracy in wireless local area network (WLAN). A novel indoor positioning algorithm based on kernel direct discriminant analysis (KDDA) and shuffled frog leaping algorithm and least square support vector regression (SFLA-LSSVR) is proposed to address the problem. Firstly the proposed algorithm employs kernel function strategy to map RSS signal to the field of nonlinear, which is sampled from each access point (AP), and extracts nonlinear features effectively, and reconstructs the positioning information, and discards the redundant positioning features and noise. Secondly, LSSVR algorithm is employed to build the mapping relation model between positioning features and physical locations, and SFLA is employed to optimize the parameters of the relation model, and then test points locations are predicted by using the relation model. Experimental results show that the positioning accuracy of the proposed algorithm is much superior to WKNN, ANN, LSSVR algorithm under the condition of the same sampling numbers, and the number of RSS signal which is sampled from each AP is significantly reduced in the same positioning accuracy, and the proposed algorithm is a WLAN indoor positioning algorithm with good performance.
  • Related Articles

    [1]Feng Wei, Hang Wenlong, Liang Shuang, Liu Xuejun, Wang Hui. Deep Stack Least Square Classifier with Inter-Layer Model Knowledge Transfer[J]. Journal of Computer Research and Development, 2019, 56(12): 2589-2599. DOI: 10.7544/issn1000-1239.2019.20180741
    [2]Shu Jian, Tang Jin, Liu Linlan, Hu Gang, Liu Song. Fuzzy Support Vector Regression-Based Link Quality Prediction Model for Wireless Sensor Networks[J]. Journal of Computer Research and Development, 2015, 52(8): 1842-1851. DOI: 10.7544/issn1000-1239.2015.20140670
    [3]Huang Huajuan, Ding Shifei, Shi Zhongzhi. Smooth CHKS Twin Support Vector Regression[J]. Journal of Computer Research and Development, 2015, 52(3): 561-568. DOI: 10.7544/issn1000-1239.2015.20131444
    [4]Hua Xiaopeng, Ding Shifei. Locality Preserving Twin Support Vector Machines[J]. Journal of Computer Research and Development, 2014, 51(3): 590-597.
    [5]Zhu Fei, Liu Quan, Fu Qiming, Fu Yuchen. A Least Square Actor-Critic Approach for Continuous Action Space[J]. Journal of Computer Research and Development, 2014, 51(3): 548-558.
    [6]Ding Lizhong and Liao Shizhong. KMA-α:A Kernel Matrix Approximation Algorithm for Support Vector Machines[J]. Journal of Computer Research and Development, 2012, 49(4): 746-753.
    [7]Xiong Jinzhi, Xu Jianmin, and Yuan Huaqiang. Convergenceness of a General Formulation for Polynomial Smooth Support Vector Regressions[J]. Journal of Computer Research and Development, 2011, 48(3): 464-470.
    [8]Zeng Fanzi, Liang Zhenhua, and Li Renfa. An Approach to Mobile Position Tracking Based on Support Vector Regression and Game Theory[J]. Journal of Computer Research and Development, 2010, 47(10): 1709-1713.
    [9]Yang Xiaowei, Lu Jie, Zhang Guangquan. An Effective Pruning Algorithm for Least Squares Support Vector Machine Classifier[J]. Journal of Computer Research and Development, 2007, 44(7): 1128-1136.
    [10]Zhou Minghua, Wang Guozhao. Genetic Algorithm-Based Least Square Fitting of B-Spline and Bézier Curves[J]. Journal of Computer Research and Development, 2005, 42(1): 134-143.

Catalog

    Article views (1475) PDF downloads (514) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return