• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Tao Wei, Pan Zhisong, Zhu Xiaohui, Tao Qing. The Optimal Individual Convergence Rate for the Projected Subgradient Method with Linear Interpolation Operation[J]. Journal of Computer Research and Development, 2017, 54(3): 529-536. DOI: 10.7544/issn1000-1239.2017.20160155
Citation: Tao Wei, Pan Zhisong, Zhu Xiaohui, Tao Qing. The Optimal Individual Convergence Rate for the Projected Subgradient Method with Linear Interpolation Operation[J]. Journal of Computer Research and Development, 2017, 54(3): 529-536. DOI: 10.7544/issn1000-1239.2017.20160155

The Optimal Individual Convergence Rate for the Projected Subgradient Method with Linear Interpolation Operation

More Information
  • Published Date: February 28, 2017
  • The projected subgradient method is one of the simplest algorithms for solving nonsmooth constrained optimization problems. So far, only the optimal convergence rate in terms of the averaged output has been obtained. Its individual convergence rate is even regarded as an open problem. Recently, by incorporating a linear interpolation operation into the dual averaging methods, Nesterov and Shikhman achieved a quasi-monotone subgradient method for nonsmooth convex minimization, which is proved to have the optimal individual convergence rate. Unfortunately, their discussion is only limited to the dual averaging methods. This paper focuses on the individual convergence rate of projected subgradient methods. By employing the same technique, we present a projected subgradient method with linear interpolation operation. In contrast to the work of Nesterov and Shikhman, the projected subgradient method itself in the proposed method has to be modified slightly so as to ensure the individual convergence rate. We prove that the proposed method has the optimal individual convergence rate for solving nonsmooth convex problems. Further, the corresponding stochastic method is proved to have the optimal individual convergence rate. This can be viewed as an approximate answer to the open problem of optimal individual convergence of the projected subgradient methods. The experiments verify the correctness of our analysis and demonstrate the high performance of the proposed methods in real-time stabilization.
  • Related Articles

    [1]Wang Fengjuan, Lü Pan, Jin Ouwen, Xing Qinghui, Deng Shuiguang. A Resource Allocation Method for Neuron Computer Operating System[J]. Journal of Computer Research and Development, 2023, 60(9): 1948-1959. DOI: 10.7544/issn1000-1239.202330422
    [2]Ding Chengcheng, Tao Wei, Tao Qing. A Unified Momentum Method with Triple-Parameters and Its Optimal Convergence Rate[J]. Journal of Computer Research and Development, 2020, 57(8): 1571-1580. DOI: 10.7544/issn1000-1239.2020.20200194
    [3]Wu Jinjin, Liu Quan, Chen Song, Yan Yan. Averaged Weighted Double Deep Q-Network[J]. Journal of Computer Research and Development, 2020, 57(3): 576-589. DOI: 10.7544/issn1000-1239.2020.20190159
    [4]Cheng Yujia, Tao Wei, Liu Yuxiang, Tao Qing. Optimal Individual Convergence Rate of the Heavy-Ball-Based Momentum Methods[J]. Journal of Computer Research and Development, 2019, 56(8): 1686-1694. DOI: 10.7544/issn1000-1239.2019.20190167
    [5]Zhu Zhenfeng, Zhai Yanxiang, Ye Yangdong. A Linear Method for Online AUC Maximization[J]. Journal of Computer Research and Development, 2018, 55(12): 2725-2733. DOI: 10.7544/issn1000-1239.2018.20170357
    [6]Luo Yang, Xia Chunhe, Li Yazhuo, Wei Zhao, Liang Xiaoyan. A Polymorphic Shellcode Detection Method Based on Dual-Mode Virtual Machine[J]. Journal of Computer Research and Development, 2014, 51(8): 1704-1714. DOI: 10.7544/issn1000-1239.2014.20121149
    [7]Du Yi, Zhang Ting, Lu Detang, Li Daolun. An Interpolation Method Using an Improved Markov Model[J]. Journal of Computer Research and Development, 2012, 49(3): 565-571.
    [8]Kong Liangliang, Jiang Jianhui, Xiao Jie, and Jiang Yuanyuan. Simulation-Based Non-Linear Methods for the Estimation of Execution Cycles of ARM Programs[J]. Journal of Computer Research and Development, 2012, 49(2): 392-401.
    [9]Liang Xiuxia, Zhang Caiming, Liu Yi, and Zhang Aiwu. A Topology Complexity Based Method to Approximate Isosurface with Trilinear Interpolated Triangular Patch[J]. Journal of Computer Research and Development, 2006, 43(3): 528-535.
    [10]Ru Liyun, Ma Shaoping, and Lu Jing. Feature Fusion Based on the Average Precision in Image Retrieval[J]. Journal of Computer Research and Development, 2005, 42(9): 1640-1646.

Catalog

    Article views (1215) PDF downloads (494) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return