• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Zhang Chun, Zhou Jing. Optimization Algorithm of Association Rule Mining for EMU Operation and Maintenance Efficiency[J]. Journal of Computer Research and Development, 2017, 54(9): 1958-1965. DOI: 10.7544/issn1000-1239.2017.20160498
Citation: Zhang Chun, Zhou Jing. Optimization Algorithm of Association Rule Mining for EMU Operation and Maintenance Efficiency[J]. Journal of Computer Research and Development, 2017, 54(9): 1958-1965. DOI: 10.7544/issn1000-1239.2017.20160498

Optimization Algorithm of Association Rule Mining for EMU Operation and Maintenance Efficiency

More Information
  • Published Date: August 31, 2017
  • With the increase of EMU operation time and mileage, EMU operation and maintenance system has accumulated a large amount of data. Using the high-performance association rule mining algorithms to quickly find useful information from the EMU operation and maintenance data, is of significant importance for improving the operation and maintenance efficiency of the key components of the EMU. In the view of the characteristics of EMU operation and maintenance data—huge volume and low value density, we design the AMPHP algorithm based on the approximate minimal perfect Hash function. Compared with the traditional DHP algorithm, it can filter out all the infrequent item sets without additional database scanning. In order to break the limitation of the single machine algorithm and further improve the performance of the algorithm, we use the idea of SON algorithm for reference to parallelize the AMPHP algorithm and finally propose the AMPHP-SON algorithm. Some experiments have been performed on the operation and maintenance data of EMU traction motor. The experimental result shows that the AMPHP-SON algorithm has good time performance and the rules dug out can be effectively used to guide the optimization of the repair class and repair system of EMU, so as to improve the efficiency of EMU operation and maintenance.
  • Related Articles

    [1]Zhao Xingwang, Zhang Yaopu, Liang Jiye. Two-Stage Ensemble-Based Community Discovery Algorithm in Multilayer Networks[J]. Journal of Computer Research and Development, 2023, 60(12): 2832-2843. DOI: 10.7544/issn1000-1239.202220214
    [2]Zhao Xia, Zhang Zehua, Zhang Chenwei, Li Xian. RGNE:A Network Embedding Method for Overlapping Community Detection Based on Rough Granulation[J]. Journal of Computer Research and Development, 2020, 57(6): 1302-1311. DOI: 10.7544/issn1000-1239.2020.20190572
    [3]Zheng Wenping, Che Chenhao, Qian Yuhua, Wang Jie. A Two-Stage Community Detection Algorithm Based on Label Propagation[J]. Journal of Computer Research and Development, 2018, 55(9): 1959-1971. DOI: 10.7544/issn1000-1239.2018.20180277
    [4]Du Hangyuan, Wang Wenjian, Bai Liang. An Overlapping Community Detection Algorithm Based on Centrality Measurement of Network Node[J]. Journal of Computer Research and Development, 2018, 55(8): 1619-1630. DOI: 10.7544/issn1000-1239.2018.20180187
    [5]Liu Yao, Kang Xiaohui, Gao Hong, Liu Qiao, Wu Zufeng, Qin Zhiguang. A Community Detecting Method Based on the Node Intimacy and Degree in Social Network[J]. Journal of Computer Research and Development, 2015, 52(10): 2363-2372. DOI: 10.7544/issn1000-1239.2015.20150407
    [6]Xin Yu, Yang Jing, Xie Zhiqiang. A Semantic Overlapping Community Detecting Algorithm in Social Networks Based on Random Walk[J]. Journal of Computer Research and Development, 2015, 52(2): 499-511. DOI: 10.7544/issn1000-1239.2015.20131246
    [7]Sun Yifan, Li Sai. Similarity-Based Community Detection in Social Network of Microblog[J]. Journal of Computer Research and Development, 2014, 51(12): 2797-2807. DOI: 10.7544/issn1000-1239.2014.20131209
    [8]Zhu Mu, Meng Fanrong, and Zhou Yong. Density-Based Link Clustering Algorithm for Overlapping Community Detection[J]. Journal of Computer Research and Development, 2013, 50(12): 2520-2530.
    [9]Deng Xiaolong, Wang Bai, Wu Bin, and Yang Shengqi. Modularity Modeling and Evaluation in Community Detecting of Complex Network Based on Information Entropy[J]. Journal of Computer Research and Development, 2012, 49(4): 725-734.
    [10]Lin Youfang, Wang Tianyu, Tang Rui, Zhou Yuanwei, Huang Houkuan. An Effective Model and Algorithm for Community Detection in Social Networks[J]. Journal of Computer Research and Development, 2012, 49(2): 337-345.

Catalog

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return