• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Sun Yong, Tan Wenan. Cross-Organizational Workflow Task Allocation Algorithms for Socially Aware Collaborative Computing[J]. Journal of Computer Research and Development, 2017, 54(9): 1865-1879. DOI: 10.7544/issn1000-1239.2017.20160513
Citation: Sun Yong, Tan Wenan. Cross-Organizational Workflow Task Allocation Algorithms for Socially Aware Collaborative Computing[J]. Journal of Computer Research and Development, 2017, 54(9): 1865-1879. DOI: 10.7544/issn1000-1239.2017.20160513

Cross-Organizational Workflow Task Allocation Algorithms for Socially Aware Collaborative Computing

More Information
  • Published Date: August 31, 2017
  • Recently, human-interactions are substantial part of Web service-oriented collaborations and cross-organizational business processes. Social networks can help to process crowdsourced workflow tasks among humans in a more effective manner. However, it is challenging to identify a group of prosperous collaborative partners with a leader to work on joint cross-organizational workflow tasks in a prompt and efficient way, especially when the number of alternative candidates is large in collaborative networks. Therefore, in this paper, a new and efficient algorithm has been proposed to find an optimal group in social networks so as to process crowdsourced workflow tasks. Firstly, a set of new concepts has been defined to remodel the social graph; then, a sub-graph connector-based betweenness centrality algorithm has been enhanced to efficiently identify the leader who serves as the host manager of the joint workflow tasks; finally, an efficient algorithm is proposed to find the workflow task members associated with the selected leader by confining the searching space in the set of connector nodes. Theoretical analysis and extensive experiments are conducted for validation purpose; and the experimental results on real data show that our algorithms outperform several existing algorithms in terms of computation time in dealing with the increasing number of workflow task executing candidates.
  • Related Articles

    [1]Wang Chuang, Ding Yan, Huang Chenlin, Song Liantao. Bitsliced Optimization of SM4 Algorithm with the SIMD Instruction Set[J]. Journal of Computer Research and Development, 2024, 61(8): 2097-2109. DOI: 10.7544/issn1000-1239.202220531
    [2]Li Maowen, Qu Guoyuan, Wei Dazhou, Jia Haipeng. Performance Optimization of Neural Network Convolution Based on GPU Platform[J]. Journal of Computer Research and Development, 2022, 59(6): 1181-1191. DOI: 10.7544/issn1000-1239.20200985
    [3]Shen Jie, Long Biao, Jiang Hao, Huang Chun. Implementation and Optimization of Vector Trigonometric Functions on Phytium Processors[J]. Journal of Computer Research and Development, 2020, 57(12): 2610-2620. DOI: 10.7544/issn1000-1239.2020.20190721
    [4]Zhang Jun, Xie Jingcheng, Shen Fanfan, Tan Hai, Wang Lümeng, He Yanxiang. Performance Optimization of Cache Subsystem in General Purpose Graphics Processing Units: A Survey[J]. Journal of Computer Research and Development, 2020, 57(6): 1191-1207. DOI: 10.7544/issn1000-1239.2020.20200113
    [5]Sun Chang’ai, Wang Zhen, Pan Lin. Optimized Mutation Testing Techniques for WS-BPEL Programs[J]. Journal of Computer Research and Development, 2019, 56(4): 895-905. DOI: 10.7544/issn1000-1239.2019.20180037
    [6]Liu Song, Wu Weiguo, Zhao Bo, Jiang Qing. Loop Tiling for Optimization of Locality and Parallelism[J]. Journal of Computer Research and Development, 2015, 52(5): 1160-1176. DOI: 10.7544/issn1000-1239.2015.20131387
    [7]Wang Yongxian, Zhang Lilun, Che Yonggang, Xu Chuanfu, Liu Wei, Cheng Xinghua. Heterogeneous Computing and Optimization on Tianhe-2,Supercomputer System for High-Order Accurate CFD Applications[J]. Journal of Computer Research and Development, 2015, 52(4): 833-842. DOI: 10.7544/issn1000-1239.2015.20131922
    [8]Gu Rong, Yan Jinshuang, Yang Xiaoliang, Yuan Chunfeng, and Huang Yihua. Performance Optimization for Short Job Execution in Hadoop MapReduce[J]. Journal of Computer Research and Development, 2014, 51(6): 1270-1280.
    [9]Luo Hongbing, Zhang Xiaoxia, Wang Wei, and Wu Linping. Instruction Level Parallel Optimizing for Scientific Computing Application[J]. Journal of Computer Research and Development, 2014, 51(6): 1263-1269.
    [10]Li Lei, Niu Chunlei, Chen Ningjiang, Wei Jun. A High-Performance Strategy for Optimizing Web Services[J]. Journal of Computer Research and Development, 2007, 44(7): 1191-1198.
  • Cited by

    Periodical cited type(5)

    1. 郭炜杰,包晓安. 基于Ajax的智能终端一次性口令身份认证仿真. 计算机仿真. 2023(07): 176-179 .
    2. 罗娟,章翠君,王纯. 基于众包的多楼层定位方法. 计算机研究与发展. 2022(02): 452-462 . 本站查看
    3. 胡美慧,向志威. 基于离散余弦变换的电力营销系统客户权限自动识别方法. 自动化技术与应用. 2022(05): 125-129 .
    4. 赵鹏飞. 港口身份智能识别系统设计与实现. 舰船科学技术. 2021(14): 202-204 .
    5. 倪志文,马小虎,孙霄,边丽娜. 结合显式和隐式特征交互的深度融合模型. 计算机工程. 2020(03): 87-92+98 .

    Other cited types(9)

Catalog

    Article views (1512) PDF downloads (896) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return