• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Wang Yuquan, Wen Lijie, Yan Zhiqiang. Alignment Based Conformance Checking Algorithm for BPMN 2.0 Model[J]. Journal of Computer Research and Development, 2017, 54(9): 1920-1930. DOI: 10.7544/issn1000-1239.2017.20160756
Citation: Wang Yuquan, Wen Lijie, Yan Zhiqiang. Alignment Based Conformance Checking Algorithm for BPMN 2.0 Model[J]. Journal of Computer Research and Development, 2017, 54(9): 1920-1930. DOI: 10.7544/issn1000-1239.2017.20160756

Alignment Based Conformance Checking Algorithm for BPMN 2.0 Model

More Information
  • Published Date: August 31, 2017
  • Process mining is an emerging discipline providing comprehensive sets of tools to provide fact-based insights and to support process improvements. This new discipline builds on process model-driven approaches and data-centric analysis techniques such as machine learning and data mining. Conformance checking approaches, i.e., techniques to compare and relate event logs and process models, are one of the three core process mining techniques. It is shown that conformance can be quantified and that deviations can be diagnosed. BPMN 2.0 model has so powerful expression ability that it can express complex patterns like multi-instance, sub-process, OR gateway and boundary event. However, there is no existing conformance checking algorithm supporting such complex patterns. To solve this problem, this paper proposes an algorithm (Acorn) for conformance checking for BPMN 2.0 model, which supports aforesaid complex patterns. The algorithm uses A\+* algorithm to find the minimum cost alignment, which is used to calculate fitness between BPMN 2.0 model and the log. In addition, virtual cost and expected cost are introduced for optimization. Experimental evaluations show that Acorn can find the best alignment by exploiting the meanings of BPMN 2.0 elements correctly and efficiently, and the introduction of virtual cost and expectation cost indeed reduces the search space.
  • Related Articles

    [1]Bai Xuefei, Wang Wenjian, Liang Jiye. An Active Contour Model Based on Region Saliency for Image Segmentation[J]. Journal of Computer Research and Development, 2012, 49(12): 2686-2695.
    [2]Long Jianwu, Shen Xuanjing, and Chen Haipeng. Interactive Document Images Thresholding Segmentation Algorithm Based on Image Regions[J]. Journal of Computer Research and Development, 2012, 49(7): 1420-1431.
    [3]Liu Zhe, Song Yuqing, Chen Jianmei, Xie Conghua, Song Wenshan. Image Segmentation Based on Non-Parametric Mixture Models of Chebyshev Orthogonal Polynomials of the Second Kind[J]. Journal of Computer Research and Development, 2011, 48(11): 2008-2014.
    [4]Zhu Feng, Luo Limin, Song Yuqing, Chen Jianmei, Zuo Xin. Adaptive Spatially Neighborhood Information Gaussian Mixture Model for Image Segmentation[J]. Journal of Computer Research and Development, 2011, 48(11): 2000-2007.
    [5]Chen Yunjie, Zhang Jianwei, Wang Shunfeng, Zhan Tianming. Brain MR Image Segmentation Based on Anisotropic Wells Model[J]. Journal of Computer Research and Development, 2010, 47(11): 1878-1885.
    [6]Wang Wenhui, Feng Qianjin, Chen Wufan. Segmentation of Brain MR Images Based on the Measurement of Difference of Mutual Information and Gauss-Markov Random Field Model[J]. Journal of Computer Research and Development, 2009, 46(3): 521-527.
    [7]Shi Chunqi, Shi Zhiping, Liu Xi, Shi Zhongzhi. Image Segmentation Based on Self-Organizing Dynamic Neural Network[J]. Journal of Computer Research and Development, 2009, 46(1): 23-30.
    [8]Chen Yunjie, Zhang Jianwei, Wei Zhihui, Xia Desheng, Heng Pheng Ann. Brain MRI Segmentation Using the Active Contours Based on Gaussian Mixture Models[J]. Journal of Computer Research and Development, 2007, 44(9): 1595-1603.
    [9]Shi Chengxian, Wang Hongyuan, Heng Pheng Ann, Xia Deshen. A Parametric Active Contour Model for Medical Image Segmentation Using Priori Shape Force Field[J]. Journal of Computer Research and Development, 2006, 43(12): 2131-2137.
    [10]Zhang Jianwei, Xia Deshen. An Image Segmentation Model Based on Dual Level Sets[J]. Journal of Computer Research and Development, 2006, 43(1): 120-125.

Catalog

    Article views (1267) PDF downloads (560) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return