• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Hu Haiyang, Liu Runhua, Hu Hua. Multi-Objective Optimization for Task Scheduling in Mobile Cloud Computing[J]. Journal of Computer Research and Development, 2017, 54(9): 1909-1919. DOI: 10.7544/issn1000-1239.2017.20160757
Citation: Hu Haiyang, Liu Runhua, Hu Hua. Multi-Objective Optimization for Task Scheduling in Mobile Cloud Computing[J]. Journal of Computer Research and Development, 2017, 54(9): 1909-1919. DOI: 10.7544/issn1000-1239.2017.20160757

Multi-Objective Optimization for Task Scheduling in Mobile Cloud Computing

More Information
  • Published Date: August 31, 2017
  • Mobile cloud computing provides effective help for mobile users to migrate their workflow tasks to cloud servers for executing due to the mobile device’s limited hardware capability and battery energy carried. When scheduling workflow tasks between mobile devices and cloud servers, it needs to consider both the energy consumed by the mobile device and the total amount of time needed for the workflow application. Traditional methods for scheduling workflow tasks in mobile cloud computing usually address only one of two issues: saving energy consumption or minimizing the time needed. They fail to provide methods for jointly optimizing the time and energy consumption at the same time. Based on the relations of workflow tasks, the time needed in the workflow application is computed due to the tasks scheduling between the cloud servers and the mobile devices that use the technique of dynamic voltage and frequency scaling. The energy consumption for executing tasks on the cloud server and mobile devices are modeled and computed. The scheduling scheme and objective function for jointly optimizing the time needed and energy consumption are proposed. Algorithms based on the simulated annealing are designed for the mobile devices. Their time complexities are analyzed. Extensive experiments are conducted for comparing the proposed methods with other research works, and the experimental results demonstrate the correctness and effectiveness of our approaches.
  • Related Articles

    [1]Zhang Xiaodong, Zhang Chaokun, Zhao Jijun. State-of-the-Art Survey on Edge Intelligence[J]. Journal of Computer Research and Development, 2023, 60(12): 2749-2769. DOI: 10.7544/issn1000-1239.202220192
    [2]Wang Rui, Qi Jianpeng, Chen Liang, Yang Long. Survey of Collaborative Inference for Edge Intelligence[J]. Journal of Computer Research and Development, 2023, 60(2): 398-414. DOI: 10.7544/issn1000-1239.202110867
    [3]Zhang Wenzhu, Yu Jinghua. Task Offloading Strategy in Mobile Edge Computing Based on Cloud-Edge-End Cooperation[J]. Journal of Computer Research and Development, 2023, 60(2): 371-385. DOI: 10.7544/issn1000-1239.202110803
    [4]Su Mingfeng, Wang Guojun, Li Renfa. Resource Deployment with Prediction and Task Scheduling Optimization in Edge Cloud Collaborative Computing[J]. Journal of Computer Research and Development, 2021, 58(11): 2558-2570. DOI: 10.7544/issn1000-1239.2021.20200621
    [5]Huang Qianyi, Li Zhiyang, Xie Wentao, Zhang Qian. Edge Computing in Smart Homes[J]. Journal of Computer Research and Development, 2020, 57(9): 1800-1809. DOI: 10.7544/issn1000-1239.2020.20200253
    [6]Yue Guangxue, Dai Yasheng, Yang Xiaohui, Liu Jianhua, You Zhenxu, Zhu Youkang. Model of Trusted Cooperative Service for Edge Computing[J]. Journal of Computer Research and Development, 2020, 57(5): 1080-1102. DOI: 10.7544/issn1000-1239.2020.20190077
    [7]Ning Zhenyu, Zhang Fengwei, Shi Weisong. A Study of Using TEE on Edge Computing[J]. Journal of Computer Research and Development, 2019, 56(7): 1441-1453. DOI: 10.7544/issn1000-1239.2019.20180522
    [8]Shi Weisong, Zhang Xingzhou, Wang Yifan, Zhang Qingyang. Edge Computing: State-of-the-Art and Future Directions[J]. Journal of Computer Research and Development, 2019, 56(1): 69-89. DOI: 10.7544/issn1000-1239.2019.20180760
    [9]Deng Xiaoheng, Guan Peiyuan, Wan Zhiwen, Liu Enlu, Luo Jie, Zhao Zhihui, Liu Yajun, Zhang Honggang. Integrated Trust Based Resource Cooperation in Edge Computing[J]. Journal of Computer Research and Development, 2018, 55(3): 449-477. DOI: 10.7544/issn1000-1239.2018.20170800
    [10]Zhao Ziming, Liu Fang, Cai Zhiping, Xiao Nong. Edge Computing: Platforms, Applications and Challenges[J]. Journal of Computer Research and Development, 2018, 55(2): 327-337. DOI: 10.7544/issn1000-1239.2018.20170228

Catalog

    Article views (1593) PDF downloads (1232) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return