• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Liang Bin, Liu Quan, Xu Jin, Zhou Qian, Zhang Peng. Aspect-Based Sentiment Analysis Based on Multi-Attention CNN[J]. Journal of Computer Research and Development, 2017, 54(8): 1724-1735. DOI: 10.7544/issn1000-1239.2017.20170178
Citation: Liang Bin, Liu Quan, Xu Jin, Zhou Qian, Zhang Peng. Aspect-Based Sentiment Analysis Based on Multi-Attention CNN[J]. Journal of Computer Research and Development, 2017, 54(8): 1724-1735. DOI: 10.7544/issn1000-1239.2017.20170178

Aspect-Based Sentiment Analysis Based on Multi-Attention CNN

More Information
  • Published Date: July 31, 2017
  • Unlike general sentiment analysis, aspect-based sentiment classification aims to infer the sentiment polarity of a sentence depending not only on the context but also on the aspect. For example, in sentence “The food was very good, but the service at that restaurant was dreadful”, for aspect “food”, the sentiment polarity is positive while the sentiment polarity of aspect “service” is negative. Even in the same sentence, sentiment polarity could be absolutely opposite when focusing on different aspects, so we need to infer the sentiment polarities of different aspects correctly. The attention mechanism is a good way for aspect-based sentiment classification. In current research, however, the attention mechanism is more combined with RNN or LSTM networks. Such neural network-based architectures generally rely on complex structures and cannot parallelize over the words of a sentence. To address the above problems, this paper proposes a multi-attention convolutional neural networks (MATT-CNN) for aspect-based sentiment classification. This approach can capture deeper level sentiment information and distinguish sentiment polarity of different aspects explicitly through a multi-attention mechanism without using any external parsing results. Experiments on the SemEval2014 and Automotive-domain datasets show that, our approach achieves better performance than traditional CNN, attention-based CNN and attention-based LSTM.
  • Related Articles

    [1]Lu Yuxuan, Kong Lanju, Zhang Baochen, Min Xinping. MC-RHotStuff: Multi-Chain Oriented HotStuff Consensus Mechanism Based on Reputation[J]. Journal of Computer Research and Development, 2024, 61(6): 1559-1572. DOI: 10.7544/issn1000-1239.202330195
    [2]Yu Xiao, Liu Hui, Lin Yuxiu, Zhang Caiming. Consensus Guided Auto-Weighted Multi-View Clustering[J]. Journal of Computer Research and Development, 2022, 59(7): 1496-1508. DOI: 10.7544/issn1000-1239.20210126
    [3]Yang Hongzhang, Yang Yahui, Tu Yaofeng, Sun Guangyu, Wu Zhonghai. Proactive Fault Tolerance Based on “Collection—Prediction—Migration—Feedback” Mechanism[J]. Journal of Computer Research and Development, 2020, 57(2): 306-317. DOI: 10.7544/issn1000-1239.2020.20190549
    [4]Wang Zuan, Tian Youliang, Yue Chaoyue, Zhang Duo. Consensus Mechanism Based on Threshold Cryptography Scheme[J]. Journal of Computer Research and Development, 2019, 56(12): 2671-2683. DOI: 10.7544/issn1000-1239.2019.20190053
    [5]Wei Songjie, Li Shuai, Mo Bing, Wang Jiahe. Regional Cooperative Authentication Protocol for LEO Satellite Networks Based on Consensus Mechanism[J]. Journal of Computer Research and Development, 2018, 55(10): 2244-2255. DOI: 10.7544/issn1000-1239.2018.20180431
    [6]Liu Yiran, Ke Junming, Jiang Han, Song Xiangfu. Improvement of the PoS Consensus Mechanism in Blockchain Based on Shapley Value[J]. Journal of Computer Research and Development, 2018, 55(10): 2208-2218. DOI: 10.7544/issn1000-1239.2018.20180439
    [7]Ye Songtao, Lin Yaping, Hu Yupeng, Zhou Siwang, You Zhiqiang. A Faulty Sensor Node Tolerance Algorithm Based on Cut Point Set[J]. Journal of Computer Research and Development, 2009, 46(12): 2117-2125.
    [8]Han Jianjun, Gan Lu, Ruan Youlin, Li Qinghua, Abbas A.Essa. Real-Time Dynamic Scheduling Algorithms for the Savings of Power Consumption and Fault Tolerance in Multi-Processor Computing Environment[J]. Journal of Computer Research and Development, 2008, 45(4): 706-715.
    [9]Cheng Xin, Liu Hongwei, Dong Jian, Yang Xiaozong. A Fault Tolerance Deadlock Detection/Resolution Algorithm for the AND-OR Model[J]. Journal of Computer Research and Development, 2007, 44(5): 798-805.
    [10]Luo Wei, Yang Fumin, Pang Liping, and Li Jun. A Real-Time Fault-Tolerant Scheduling Algorithm for Distributed Systems Based on Deferred Active Backup-Copy[J]. Journal of Computer Research and Development, 2007, 44(3).
  • Cited by

    Periodical cited type(10)

    1. 王娟,努尔买买提·黑力力. 基于字典分级和属性加权的密文排序检索方案. 新疆大学学报(自然科学版)(中英文). 2024(02): 246-256 .
    2. 刘佩恒,张劼,张华,张欣,王梦迪. 支持语义扩展的多关键词密文检索方案. 中国电子科学研究院学报. 2024(01): 42-52 .
    3. 於湘涛,温刚,刘冉,舒斐,刘威麟,赛峰. 电力调度自动化网络安全防护技术研究. 微型电脑应用. 2024(12): 187-190+198 .
    4. 刘宁,牛佳乐,郑剑,李思岑,王丹丹. 基于向量空间模型的信息资源关键词智能检索工具的研究. 自动化技术与应用. 2023(10): 105-107+161 .
    5. 管小明,李宏俊. 基于支持可验证的物联网感知层信息加密仿真. 计算机仿真. 2023(11): 357-360+441 .
    6. 黄健,铁治欣,宋滢锟. 云存储环境中多关键词加密排序搜索方法研究. 软件导刊. 2022(01): 226-232 .
    7. 牛淑芬,张美玲,周思玮,闫森. 面向移动终端的密文可验证属性基可搜索加密方案. 计算机工程与科学. 2022(11): 1941-1950 .
    8. 陈红鹏,樊增辉. 基于数据加密技术的海外数据中心拓扑架构设计. 微型电脑应用. 2022(12): 204-208 .
    9. 王娜,郑坤,付俊松,李剑. 基于分块的移动边缘计算密文检索方法. 通信学报. 2020(07): 95-102 .
    10. 霍颖瑜. 基于混沌算法的高端装备指令数据加密方法. 兵器装备工程学报. 2020(11): 190-193 .

    Other cited types(14)

Catalog

    Article views (4015) PDF downloads (2553) Cited by(24)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return