• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Dong Xueshi, Dong Wenyong, Wang Yufeng. Hybrid Algorithms for Multi-Objective Balanced Traveling Salesman Problem[J]. Journal of Computer Research and Development, 2017, 54(8): 1751-1762. DOI: 10.7544/issn1000-1239.2017.20170347
Citation: Dong Xueshi, Dong Wenyong, Wang Yufeng. Hybrid Algorithms for Multi-Objective Balanced Traveling Salesman Problem[J]. Journal of Computer Research and Development, 2017, 54(8): 1751-1762. DOI: 10.7544/issn1000-1239.2017.20170347

Hybrid Algorithms for Multi-Objective Balanced Traveling Salesman Problem

More Information
  • Published Date: July 31, 2017
  • Balanced traveling salesman problem (BTSP), a variant of traveling salesman problem (TSP), is another combination optimization problem, which can be applied in many fields such as the optimization problem for gas turbine engines (GTE). BTSP can only model optimization problems with the single traveling salesman and task, but can’t model and optimize the problem with multiple salesmen and tasks at the same time. Therefore, this paper firstly provides a multi-objective balanced traveling salesman problem (MBTSP) model, which can model the optimization problems with multiple salesmen and tasks. Specifically it can be applied to the real-world problems with multiple objectives or individuals, for example, the optimization for multiple GTE. Some literatures have proved that ITO algorithm and genetic algorithms can show better performance in solving combination optimization problems, therefore, the paper utilizes the hybrid ITO algorithm (HITO) and hybrid genetic algorithm (GA) to solve MBTSP. For HITO, it utilizes ant colony optimization (ACO) to produce a probabilistic generative model based on graph, and then uses the drift and volatility operators to update the model, and obtains optimum solution. For the hybrid GA, the first is improved by greedy method called GAG, the second GA is optimized by incorporating hill-climbing named GAHC, and the final one is GASA. In order to effectively test the algorithms, the paper makes extensive experiments using small scale to large scale MBTSP data. The experiments show that the algorithms are effective and reveal the different characteristics in solving MBTSP problem.
  • Related Articles

    [1]Zhao Xiaoyang, Li Zhongnian, Wang Wenyu, Xu Xinzheng. ADIC: An Adaptive Disentangled CNN Classifier for Interpretable Image Recognition[J]. Journal of Computer Research and Development, 2023, 60(8): 1754-1767. DOI: 10.7544/issn1000-1239.202330231
    [2]Xie Kunpeng, Yi Dezhi, Liu Yiqing, Liu Hang, He Xinyu, Gong Cheng, Lu Ye. SAF-CNN:A Sparse Acceleration Framework of Convolutional Neural Network forEmbedded FPGAs[J]. Journal of Computer Research and Development, 2023, 60(5): 1053-1072. DOI: 10.7544/issn1000-1239.202220735
    [3]Yin Zhaoxia, Guo Hongnian, Du Yang, Ma Wenjing, Lü Wanli, Zhang Xinpeng. Multi-Domain Reversible Data Hiding in JPEG Images and Payload Distribution Algorithm[J]. Journal of Computer Research and Development, 2022, 59(8): 1831-1840. DOI: 10.7544/issn1000-1239.20210411
    [4]Liu Yanxiao, Wu Ping, Sun Qindong. Secret Image Sharing Schemes Based on Region Convolution Neural Network[J]. Journal of Computer Research and Development, 2021, 58(5): 1065-1074. DOI: 10.7544/issn1000-1239.2021.20200898
    [5]Wang Yangyang, He Hongjie, Chen Fan, Zhang Shanjun. Reversible Data Hiding in JPEG Images Based on Distortion-Extension Cost[J]. Journal of Computer Research and Development, 2020, 57(11): 2271-2282. DOI: 10.7544/issn1000-1239.2020.20200434
    [6]Xing Xinying, Ji Junzhong, Yao Yao. Brain Networks Classification Based on an Adaptive Multi-Task Convolutional Neural Networks[J]. Journal of Computer Research and Development, 2020, 57(7): 1449-1459. DOI: 10.7544/issn1000-1239.2020.20190186
    [7]Lü Guohao, Luo Siwei, Huang Yaping, Jiang Xinlan. A Novel Regularization Method Based on Convolution Neural Network[J]. Journal of Computer Research and Development, 2014, 51(9): 1891-1900. DOI: 10.7544/issn1000-1239.2014.20140266
    [8]Zhang Zhan, Liu Guangjie, Dai Yuewei, Wang Zhiquan. A Self-Adaptive Image Steganography Algorithm Based on Cover-Coding and Markov Model[J]. Journal of Computer Research and Development, 2012, 49(8): 1668-1675.
    [9]Yang Chunfang, Liu Fenlin, and Luo Xiangyang. Histograms Difference and Quantitative Steganalysis of JPEG Steganography Based on Relative Entropy[J]. Journal of Computer Research and Development, 2011, 48(8): 1563-1569.
    [10]Zheng Qingfang, Gao Wen. Adaptive Skin Detection in JPEG Compressed Images[J]. Journal of Computer Research and Development, 2006, 43(7): 1194-1200.

Catalog

    Article views (1811) PDF downloads (695) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return