• 中国精品科技期刊
  • CCF推荐A类中文期刊
  • 计算领域高质量科技期刊T1类
Advanced Search
Lei Kenan, Zhang Yuqing, Wu Chensi, Ma Hua. A System for Scoring the Exploitability of Vulnerability Based Types[J]. Journal of Computer Research and Development, 2017, 54(10): 2296-2309. DOI: 10.7544/issn1000-1239.2017.20170457
Citation: Lei Kenan, Zhang Yuqing, Wu Chensi, Ma Hua. A System for Scoring the Exploitability of Vulnerability Based Types[J]. Journal of Computer Research and Development, 2017, 54(10): 2296-2309. DOI: 10.7544/issn1000-1239.2017.20170457

A System for Scoring the Exploitability of Vulnerability Based Types

More Information
  • Published Date: September 30, 2017
  • As is known to all, vulnerabilities play an extremely important role in network security now. Accurately quantizing the exploitability of a vulnerability is critical to the attack-graph based analysis of network information system security. Currently the most widely used assessment system for vulnerability exploitability is the common vulnerability scoring system (CVSS). Firstly, the exploitability scores of 54331 vulnerabilities are computed by using CVSS. Then, statistical analysis is performed on the computed exploitability scores, which indicates that CVSS lacks diversity, and more diverse results can help end-users prioritize vulnerabilities and fix those that pose the greatest risks at first. Statistical results show that the scores are too centralized as well. Finally, taking into account the disadvantages of CVSS, we study the influence factors of vulnerability exploitability, and demonstrate that the types of a vulnerability can influence its exploitability. Therefore, we consider vulnerability types as one of the influence factors of vulnerability exploitability, and use analytic hierarchy process to quantify it, and propose a more comprehensive quantitative evaluation system named exploitability of vulnerability scoring systems (EOVSS) based on CVSS. Experiments show that the diversity of scores computed by EOVSS is four times that computed by CVSS, and EOVSS can more accurately and effectively quantify the exploitability of a vulnerability in comparison with CVSS.
  • Related Articles

    [1]Cheng Haodong, Han Meng, Zhang Ni, Li Xiaojuan, Wang Le. Closed High Utility Itemsets Mining over Data Stream Based on Sliding Window Model[J]. Journal of Computer Research and Development, 2021, 58(11): 2500-2514. DOI: 10.7544/issn1000-1239.2021.20200554
    [2]Zhang Xiaojian, Wang Miao, Meng Xiaofeng. An Accurate Method for Mining top-k Frequent Pattern Under Differential Privacy[J]. Journal of Computer Research and Development, 2014, 51(1): 104-114.
    [3]Lei Xiangxin, Yang Zhiying, Huang Shaoyin, Hu Yunfa. Mining Frequent Subtree on Paging XML Data Stream[J]. Journal of Computer Research and Development, 2012, 49(9): 1926-1936.
    [4]Liao Guoqiong, Wu Lingqin, Wan Changxuan. Frequent Patterns Mining over Uncertain Data Streams Based on Probability Decay Window Model[J]. Journal of Computer Research and Development, 2012, 49(5): 1105-1115.
    [5]Zhu Ranwei, Wang Peng, and Liu Majin. Algorithm Based on Counting for Mining Frequent Items over Data Stream[J]. Journal of Computer Research and Development, 2011, 48(10): 1803-1811.
    [6]Tong Yongxin, Zhang Yuanyuan, Yuan Mei, Ma Shilong, Yu Dan, Zhao Li. An Efficient Algorithm for Mining Compressed Sequential Patterns[J]. Journal of Computer Research and Development, 2010, 47(1): 72-80.
    [7]Liu Xuejun, Xu Hongbing, Dong Yisheng, Qian Jiangbo, Wang Yongli. Mining Frequent Closed Patterns from a Sliding Window over Data Streams[J]. Journal of Computer Research and Development, 2006, 43(10): 1738-1743.
    [8]Liu Xuejun, Xu Hongbing, Dong Yisheng, Wang Yongli, Qian Jiangbo. Mining Frequent Patterns in Data Streams[J]. Journal of Computer Research and Development, 2005, 42(12): 2192-2198.
    [9]Ma Haibing, Zhang Chenghong, Zhang Jin, and Hu Yunfa. Mining Frequent Patterns Based on IS\++-Tree Model[J]. Journal of Computer Research and Development, 2005, 42(4): 588-593.
    [10]Wang Wei, Zhou Haofeng, Yuan Qingqing, Lou Yubo, and Sui Baile. Mining Frequent Patterns Based on Graph Theory[J]. Journal of Computer Research and Development, 2005, 42(2): 230-235.

Catalog

    Article views (1695) PDF downloads (907) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return